Processing of Accelerometry Data with GGIR in Motor Activity Research Consortium for Health

原始数据 计算机科学 管道(软件) 协调 数据处理 灵活性(工程) 加速度计 数据科学 数据挖掘 数据库 统计 声学 数学 操作系统 物理 程序设计语言
作者
Wei Guo,Andrew Leroux,Haochang Shou,Lihong Cui,Sun Jung Kang,Marie‐Pierre F. Strippoli,Martin Preisig,Vadim Zipunnikov,Kathleen Merikangas
出处
期刊:Journal for the measurement of physical behaviour [Human Kinetics]
卷期号:6 (1): 37-44 被引量:2
标识
DOI:10.1123/jmpb.2022-0018
摘要

The Mobile Motor Activity Research Consortium for Health (mMARCH) is a collaborative network of clinical and community studies that employ common digital mobile protocols and collect common clinical and biological measures across participating studies. At a high level, a key scientific goal which spans mMARCH studies is to develop a better understanding of the interrelationships between physical activity (PA), sleep (SL), and circadian rhythmicity (CR) and mental and physical health in children, adolescents, and adults. mMARCH studies employ wrist-worn accelerometry to obtain objective measures of PA/SL/CR. However, there is currently no consensus on a standard data processing pipeline for raw accelerometry data and few open-source tools which facilitate their development. The R package GGIR is the most prominent open-source software package for processing raw accelerometry data, offering great functionality and substantial user flexibility. However, even with GGIR, processing done in a harmonized and reproducible fashion across multiple analytical centers requires a nontrivial amount of expertise combined with a careful implementation. In addition, there are many statistical methods useful for analyzing PA/SL/CR patterns using accelerometry data which are implemented in non-GGIR R packages, including methods from multivariate statistics, functional data analysis, distributional data analysis, and time series analyses. To address the issues of multisite harmonization and additional feature creation, mMARCH developed a streamlined harmonized and reproducible pipeline for loading and cleaning raw accelerometry data via GGIR, merging GGIR, and non-GGIR features of PA/SL/CR together, implementing several additional data and feature quality checks, and performing multiple analyses including Joint and Individual Variation Explained, an unsupervised machine learning dimension reduction technique that identifies latent factors capturing joint across and individual to each of three domains of PA/SL/CR. The pipeline is easily modified to calculate additional features of interest, and allows for studies not affiliated with mMARCH to apply a pipeline which facilitates direct comparisons of scientific results in published work by mMARCH studies. This manuscript describes the pipeline and illustrates the use of combined GGIR and non-GGIR features by applying Joint and Individual Variation Explained to the accelerometry component of CoLaus|PsyCoLaus, one of mMARCH sites. The pipeline is publicly available via open-source R package mMARCH.AC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jh完成签到 ,获得积分10
刚刚
syq完成签到,获得积分10
1秒前
sfw完成签到,获得积分10
1秒前
2秒前
光亮面包完成签到 ,获得积分10
2秒前
小猪啵比完成签到 ,获得积分10
2秒前
小智发布了新的文献求助10
2秒前
毛慢慢发布了新的文献求助10
2秒前
lilac应助1234567890采纳,获得10
3秒前
OYE发布了新的文献求助10
3秒前
木木发布了新的文献求助10
4秒前
zhy完成签到,获得积分10
5秒前
5秒前
自由的刺猬完成签到,获得积分20
5秒前
潇洒甜瓜发布了新的文献求助10
6秒前
jessie完成签到,获得积分10
6秒前
化学胖子完成签到,获得积分10
6秒前
7秒前
CTL关闭了CTL文献求助
7秒前
詹严青完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
顾矜应助Long采纳,获得10
7秒前
8秒前
木木完成签到,获得积分20
8秒前
爆米花应助1ssd采纳,获得10
9秒前
Lucas应助reck采纳,获得10
9秒前
西瓜完成签到,获得积分10
9秒前
KDC发布了新的文献求助10
9秒前
潇湘完成签到 ,获得积分10
9秒前
打打应助sss采纳,获得20
9秒前
nicemice完成签到,获得积分10
9秒前
10秒前
GOODYUE发布了新的文献求助10
10秒前
热情的阿猫桑完成签到,获得积分10
11秒前
Gaojin锦完成签到,获得积分10
11秒前
11秒前
小二郎应助愉快的鞯采纳,获得10
12秒前
协和_子鱼发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759