Processing of Accelerometry Data with GGIR in Motor Activity Research Consortium for Health

原始数据 计算机科学 管道(软件) 协调 数据处理 灵活性(工程) 加速度计 数据科学 数据挖掘 数据库 统计 物理 数学 声学 程序设计语言 操作系统
作者
Wei Guo,Andrew Leroux,Haochang Shou,Lihong Cui,Sun Jung Kang,Marie‐Pierre F. Strippoli,Martin Preisig,Vadim Zipunnikov,Kathleen Merikangas
出处
期刊:Journal for the measurement of physical behaviour [Human Kinetics]
卷期号:6 (1): 37-44 被引量:2
标识
DOI:10.1123/jmpb.2022-0018
摘要

The Mobile Motor Activity Research Consortium for Health (mMARCH) is a collaborative network of clinical and community studies that employ common digital mobile protocols and collect common clinical and biological measures across participating studies. At a high level, a key scientific goal which spans mMARCH studies is to develop a better understanding of the interrelationships between physical activity (PA), sleep (SL), and circadian rhythmicity (CR) and mental and physical health in children, adolescents, and adults. mMARCH studies employ wrist-worn accelerometry to obtain objective measures of PA/SL/CR. However, there is currently no consensus on a standard data processing pipeline for raw accelerometry data and few open-source tools which facilitate their development. The R package GGIR is the most prominent open-source software package for processing raw accelerometry data, offering great functionality and substantial user flexibility. However, even with GGIR, processing done in a harmonized and reproducible fashion across multiple analytical centers requires a nontrivial amount of expertise combined with a careful implementation. In addition, there are many statistical methods useful for analyzing PA/SL/CR patterns using accelerometry data which are implemented in non-GGIR R packages, including methods from multivariate statistics, functional data analysis, distributional data analysis, and time series analyses. To address the issues of multisite harmonization and additional feature creation, mMARCH developed a streamlined harmonized and reproducible pipeline for loading and cleaning raw accelerometry data via GGIR, merging GGIR, and non-GGIR features of PA/SL/CR together, implementing several additional data and feature quality checks, and performing multiple analyses including Joint and Individual Variation Explained, an unsupervised machine learning dimension reduction technique that identifies latent factors capturing joint across and individual to each of three domains of PA/SL/CR. The pipeline is easily modified to calculate additional features of interest, and allows for studies not affiliated with mMARCH to apply a pipeline which facilitates direct comparisons of scientific results in published work by mMARCH studies. This manuscript describes the pipeline and illustrates the use of combined GGIR and non-GGIR features by applying Joint and Individual Variation Explained to the accelerometry component of CoLaus|PsyCoLaus, one of mMARCH sites. The pipeline is publicly available via open-source R package mMARCH.AC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大模型应助犹豫海白采纳,获得10
1秒前
2秒前
xcf完成签到,获得积分10
3秒前
烟花应助儒雅的菠萝吹雪采纳,获得10
3秒前
3秒前
5秒前
6秒前
万能图书馆应助iuuuuu采纳,获得10
6秒前
搜集达人应助liu采纳,获得10
8秒前
万嘉俊发布了新的文献求助10
8秒前
虎虎完成签到,获得积分10
9秒前
左左完成签到,获得积分20
9秒前
Onetwothree完成签到 ,获得积分10
9秒前
momo完成签到,获得积分10
9秒前
莱茵发布了新的文献求助30
11秒前
bingHAN关注了科研通微信公众号
12秒前
meimhuang关注了科研通微信公众号
12秒前
12秒前
昏睡的铅笔完成签到,获得积分10
12秒前
李健应助嗑学家采纳,获得10
12秒前
聪明蛋完成签到,获得积分10
12秒前
殷勤的咖啡完成签到,获得积分10
13秒前
13秒前
3268590946发布了新的文献求助10
13秒前
科研通AI2S应助XPR采纳,获得10
13秒前
万嘉俊完成签到,获得积分10
14秒前
LIU230907发布了新的文献求助10
16秒前
bingo发布了新的文献求助10
17秒前
GL发布了新的文献求助10
18秒前
Miller应助可靠的寒风采纳,获得10
18秒前
white33完成签到,获得积分20
19秒前
zhaow发布了新的文献求助10
19秒前
王太白完成签到,获得积分10
19秒前
3268590946完成签到,获得积分10
20秒前
skbkbe完成签到 ,获得积分10
20秒前
21秒前
哔哔鱼完成签到,获得积分10
22秒前
bolunxier完成签到,获得积分10
23秒前
23秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148815
求助须知:如何正确求助?哪些是违规求助? 2799847
关于积分的说明 7837294
捐赠科研通 2457351
什么是DOI,文献DOI怎么找? 1307824
科研通“疑难数据库(出版商)”最低求助积分说明 628276
版权声明 601663