Nondestructive testing and visualization of compound heavy metals in lettuce leaves using fluorescence hyperspectral imaging

高光谱成像 小波 数学 人工智能 模式识别(心理学) 线性回归 生物系统 化学 计算机科学 统计 生物
作者
Xin Zhou,Chunjiang Zhao,Jun Sun,Kunshan Yao,Min Xu,Jiehong Cheng
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:291: 122337-122337 被引量:17
标识
DOI:10.1016/j.saa.2023.122337
摘要

This study evaluated the feasibility of nondestructive testing and visualization of compound heavy metals (cadmium and lead) in lettuce leaves using fluorescence hyperspectral imaging. In addition, a method involving wavelet transform and stepwise regression (WT-SR) was proposed to perform dimensionality reduction of fluorescence spectral data. Fluorescent hyperspectral image acquisition and mathematical analysis were carried out on lettuce leaf samples processed with different compound heavy metal concentrations. The entire lettuce leaf sample was selected as a region of interest (ROI). Savitzky-Golay (SG) algorithm, multivariate scatter correction (MSC), standard normalized variable (SNV), first derivative (1st Der) and second derivative (2nd Der) were used to preprocess the ROI fluorescence spectra. Further, the successive projections algorithm (SPA), the competitive adaptive reweighted sampling (CARS), the iteratively retaining informative variables (IRIV) and variable iterative space shrinkage approach (VISSA), and the wavelet transform combined with stepwise regression (WT-SR) were used to reduce the dimension of spectral data. Finally, the multiple linear regression (MLR) algorithm was used to build the compound heavy metal content detection models. The results showed that the MLR models based on the feature data obtained by 1st Der-WT-SR achieved reasonable performance with Rp2 of 0.7905, RMSEP of 0.0269 mg/kg and RPD of 2.477 for Cd content under wavelet fifth layer decomposition, and with Rp2 of 0.8965, RMSEP of 0.0096 mg/kg and RPD of 3.211 for Pb content under wavelet first layer decomposition. The distribution maps of cadmium and lead contents in lettuce leaves were established using the optimal prediction models. The results further confirmed the great potential of fluorescence hyperspectral technology combined with optimization algorithm for the detection of compound heavy metals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
惠惠发布了新的文献求助10
刚刚
深夜看文献的小刘完成签到,获得积分10
刚刚
菊菊发布了新的文献求助10
刚刚
刚刚
猪猪发布了新的文献求助10
1秒前
胖豆发布了新的文献求助10
1秒前
巴啦啦能量完成签到 ,获得积分10
1秒前
2秒前
完美凝海发布了新的文献求助30
2秒前
科研菜鸟发布了新的文献求助10
2秒前
升学顺利身体健康完成签到,获得积分10
3秒前
3秒前
爱学习发布了新的文献求助10
3秒前
cc发布了新的文献求助10
4秒前
533完成签到,获得积分20
4秒前
科研通AI5应助yx采纳,获得10
4秒前
5秒前
koi发布了新的文献求助10
5秒前
浦肯野应助湖月照我影采纳,获得30
5秒前
5秒前
陈博士完成签到,获得积分10
6秒前
Citrus完成签到,获得积分10
7秒前
费老三发布了新的文献求助30
7秒前
华仔应助chenjyuu采纳,获得10
7秒前
7秒前
最最最发布了新的文献求助10
7秒前
7秒前
Tuesday完成签到 ,获得积分10
8秒前
8秒前
9秒前
阿毛发布了新的文献求助10
10秒前
11秒前
情怀应助灵巧荆采纳,获得10
11秒前
Ll发布了新的文献求助10
11秒前
Peter发布了新的文献求助30
12秒前
12秒前
13秒前
科研韭菜发布了新的文献求助10
13秒前
科研通AI5应助爱学习采纳,获得10
13秒前
科研通AI5应助跳跃的太阳采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762