Nondestructive testing and visualization of compound heavy metals in lettuce leaves using fluorescence hyperspectral imaging

高光谱成像 小波 数学 人工智能 模式识别(心理学) 线性回归 生物系统 化学 计算机科学 统计 生物
作者
Xin Zhou,Chunjiang Zhao,Jun Sun,Kunshan Yao,Min Xu,Jiehong Cheng
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:291: 122337-122337 被引量:23
标识
DOI:10.1016/j.saa.2023.122337
摘要

This study evaluated the feasibility of nondestructive testing and visualization of compound heavy metals (cadmium and lead) in lettuce leaves using fluorescence hyperspectral imaging. In addition, a method involving wavelet transform and stepwise regression (WT-SR) was proposed to perform dimensionality reduction of fluorescence spectral data. Fluorescent hyperspectral image acquisition and mathematical analysis were carried out on lettuce leaf samples processed with different compound heavy metal concentrations. The entire lettuce leaf sample was selected as a region of interest (ROI). Savitzky-Golay (SG) algorithm, multivariate scatter correction (MSC), standard normalized variable (SNV), first derivative (1st Der) and second derivative (2nd Der) were used to preprocess the ROI fluorescence spectra. Further, the successive projections algorithm (SPA), the competitive adaptive reweighted sampling (CARS), the iteratively retaining informative variables (IRIV) and variable iterative space shrinkage approach (VISSA), and the wavelet transform combined with stepwise regression (WT-SR) were used to reduce the dimension of spectral data. Finally, the multiple linear regression (MLR) algorithm was used to build the compound heavy metal content detection models. The results showed that the MLR models based on the feature data obtained by 1st Der-WT-SR achieved reasonable performance with Rp2 of 0.7905, RMSEP of 0.0269 mg/kg and RPD of 2.477 for Cd content under wavelet fifth layer decomposition, and with Rp2 of 0.8965, RMSEP of 0.0096 mg/kg and RPD of 3.211 for Pb content under wavelet first layer decomposition. The distribution maps of cadmium and lead contents in lettuce leaves were established using the optimal prediction models. The results further confirmed the great potential of fluorescence hyperspectral technology combined with optimization algorithm for the detection of compound heavy metals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
凸凸发布了新的文献求助10
刚刚
123完成签到,获得积分10
2秒前
小蘑菇应助聪慧的正豪采纳,获得10
2秒前
朱佳宁完成签到 ,获得积分10
2秒前
车宇完成签到 ,获得积分10
2秒前
苯环超人完成签到,获得积分10
3秒前
led完成签到,获得积分0
3秒前
5秒前
一叶扁舟0147完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
英勇的红酒完成签到 ,获得积分10
11秒前
11秒前
炙热尔烟完成签到,获得积分10
13秒前
哇哒西蛙完成签到,获得积分20
13秒前
尚秋月完成签到,获得积分10
13秒前
15秒前
15秒前
顺心的芝麻完成签到 ,获得积分10
16秒前
Dharma_Bums发布了新的文献求助10
17秒前
科研通AI2S应助ironsilica采纳,获得10
18秒前
18秒前
SSY完成签到,获得积分10
19秒前
LongHua发布了新的文献求助10
23秒前
缪道之完成签到 ,获得积分10
23秒前
24秒前
木偶完成签到,获得积分10
24秒前
小猫完成签到 ,获得积分10
24秒前
huayi完成签到,获得积分10
26秒前
典雅胜发布了新的文献求助10
27秒前
姚怜南完成签到,获得积分10
27秒前
Norah完成签到,获得积分10
28秒前
28秒前
饱满的毛巾完成签到,获得积分10
29秒前
玖月完成签到 ,获得积分0
30秒前
30秒前
31秒前
潇潇完成签到,获得积分10
32秒前
pluto完成签到,获得积分0
32秒前
34秒前
支雨泽发布了新的文献求助10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603579
求助须知:如何正确求助?哪些是违规求助? 4688574
关于积分的说明 14854759
捐赠科研通 4693983
什么是DOI,文献DOI怎么找? 2540888
邀请新用户注册赠送积分活动 1507108
关于科研通互助平台的介绍 1471806