中国
暴发洪水
闪光灯(摄影)
降水
环境科学
自然地理学
地理
气候学
气象学
地质学
考古
艺术
大洪水
视觉艺术
摘要
Abstract Drought can develop rapidly over a short period, the so‐called “flash drought”. The widely used standardized precipitation evapotranspiration index (SPEI), with traditional time scales longer than 1 month, cannot easily capture flash drought signals. Here, the SPEI with a 5‐day (pentad) time scale was proposed to investigate flash droughts in China from 1980 to 2017. New criteria for flash droughts based on the high‐resolution index were also developed. Flash droughts were stronger and longer in western and northern China. The intensity and duration of mild, moderate, and severe flash droughts increased during the study period, while severe flash droughts showed the largest increase. The high‐resolution SPEI permits us to examine the process of a drought event, that is, how a mild flash drought develops into a severe flash drought. The contribution of precipitation deficit to the duration of mild flash droughts was 50%. As the intensity of flash droughts increased, the contribution of high temperature and increased net radiation to flash drought duration increased from 50% (mild flash droughts) to 74% (severe flash droughts). When flash droughts occurred, Northwestern China and Southwestern China were dominated by unusually weak water vapor transport, while Northeastern China, Northern China, Southern China ,and Middle‐Lower Yangtze were mainly dominated by abnormal downward motion. The downward motion was generally accompanied by clear sky conditions with fewer clouds, higher air temperature, and higher surface solar radiation, which accelerated and amplified flash droughts triggered by initial precipitation deficits.
科研通智能强力驱动
Strongly Powered by AbleSci AI