Hybrid linear time series approach for long term forecasting of crop yield

自回归积分移动平均 平均绝对百分比误差 期限(时间) 统计 单变量 数学 产量(工程) 时间序列 计量经济学 人口 均方误差 多元统计 物理 材料科学 人口学 量子力学 社会学 冶金
作者
Wasi Alam,Kishore Sinha,Rajeev Ranjan Kumar,Mrinmoy Ray,Santosha Rathod,K. N. Singh,Prawin Arya
出处
期刊:Indian Journal of Agricultural Sciences 卷期号:88 (8): 1275-1279 被引量:9
标识
DOI:10.56093/ijas.v88i8.82573
摘要

Long term forecasting of crop production is required to establish long term vision, say by 2025, to meet growing demand of population at that point of time. Existing univariate linear time series ARIMA approach is valid for short term forecast only. In this paper, a technique for long term yield forecast has been proposed. Initially, we have tried to improve short term forecast of yield by using hybrid ARIMA through ANN approach. The forecast values of yield through hybrid approach was considered as baseline data for long term forecast of yield. Time series data on rice yield was considered for Aligarh district of Uttar Pradesh for the study. Through ARIMA (2,1,0), we got short term forecast of yield by 2020 and the residuals obtained by 2013 were used to model and forecast through ANN approach. For the residuals, 05:04s:1l (05 time delay and 04 hidden nodes) model was identified as suitable one as it has minimum values of mean absolute percentage error (MAPE) for training and testing sets. Using 05:04s:1l model, residuals were forecasted by 2020, forecast values of yield obtained through ARIMA (2,1,0) were corrected by forecasted residuals and eventually get forecast of yield through hybrid approach. The estimated MAPE for ARIMA (2,1,0) and hybrid approach were 17.677% and 4.65%, respectively. Significant reduction in MAPE through hybrid approach indicates it’s much better performance as compared to ARIMA alone. Using hybrid approach, we got forecast of yield by 2020 and considering this forecasted yield as baseline data, we got forecast by 2025 through the proposed approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助1376采纳,获得10
2秒前
2秒前
在学海中挣扎完成签到,获得积分10
3秒前
zzz完成签到,获得积分10
4秒前
小二郎应助哦哦采纳,获得10
4秒前
滑稽帝完成签到 ,获得积分10
4秒前
爆米花应助阿尼采纳,获得10
7秒前
8秒前
10秒前
Polong发布了新的文献求助10
10秒前
12秒前
清萍红檀发布了新的文献求助10
13秒前
13秒前
Lxx发布了新的文献求助10
14秒前
liuwei发布了新的文献求助10
15秒前
15秒前
16秒前
16秒前
冷傲的断天完成签到,获得积分20
17秒前
田様应助冯冯冯采纳,获得10
17秒前
18秒前
Yilion完成签到,获得积分10
19秒前
文艺的小海豚完成签到,获得积分10
19秒前
紧张的刺猬完成签到,获得积分10
19秒前
眠茶醒药完成签到,获得积分10
19秒前
holly发布了新的文献求助10
20秒前
wangye发布了新的文献求助10
20秒前
哦哦发布了新的文献求助10
23秒前
23秒前
24秒前
彭佳丽完成签到,获得积分10
24秒前
快乐一江完成签到,获得积分10
26秒前
一条小胖鱼完成签到,获得积分10
26秒前
搞怪电脑完成签到,获得积分10
26秒前
Jason完成签到,获得积分10
26秒前
27秒前
28秒前
儿科完成签到,获得积分10
30秒前
30秒前
30秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141507
求助须知:如何正确求助?哪些是违规求助? 2792469
关于积分的说明 7803258
捐赠科研通 2448691
什么是DOI,文献DOI怎么找? 1302802
科研通“疑难数据库(出版商)”最低求助积分说明 626665
版权声明 601240