Development of Prognostic Biomarkers by TMB-Guided WSI Analysis: A Two-Step Approach

计算机科学
作者
Xiangyu Liu,Zhenyu Liu,Ye Yan,Kai Wang,Aodi Wang,Xiongjun Ye,Liwei Wang,Wei Wei,Bao Li,Caixia Sun,Wei He,Xuehua Zhu,Zenan Liu,Jiangang Liu,Jian Lü,Jie Tian
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (4): 1780-1789 被引量:8
标识
DOI:10.1109/jbhi.2023.3249354
摘要

The rapid development of computational pathology has brought new opportunities for prognosis prediction using histopathological images. However, the existing deep learning frameworks lack exploration of the relationship between images and other prognostic information, resulting in poor interpretability. Tumor mutation burden (TMB) is a promising biomarker for predicting the survival outcomes of cancer patients, but its measurement is costly. Its heterogeneity may be reflected in histopathological images. Here, we report a two-step framework for prognostic prediction using whole-slide images (WSIs). First, the framework adopts a deep residual network to encode the phenotype of WSIs and classifies patient-level TMB by the deep features after aggregation and dimensionality reduction. Then, the patients' prognosis is stratified by the TMB-related information obtained during the classification model development. Deep learning feature extraction and TMB classification model construction are performed on an in-house dataset of 295 Haematoxylin & Eosin stained WSIs of clear cell renal cell carcinoma (ccRCC). The development and evaluation of prognostic biomarkers are performed on The Cancer Genome Atlas-Kidney ccRCC (TCGA-KIRC) project with 304 WSIs. Our framework achieves good performance for TMB classification with an area under the receiver operating characteristic curve (AUC) of 0.813 on the validation set. Through survival analysis, our proposed prognostic biomarkers can achieve significant stratification of patients' overall survival (P 0.05) and outperform the original TMB signature in risk stratification of patients with advanced disease. The results indicate the feasibility of mining TMB-related information from WSI to achieve stepwise prognosis prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
曦梦源完成签到 ,获得积分10
刚刚
情怀应助雪白鸿涛采纳,获得10
1秒前
1秒前
sunnyhhh完成签到,获得积分10
2秒前
2秒前
勇往直前发布了新的文献求助10
3秒前
缥缈的千柳完成签到,获得积分20
3秒前
cfy完成签到,获得积分10
4秒前
4秒前
似水无痕完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
highhigh发布了新的文献求助10
7秒前
7秒前
Piwriy发布了新的文献求助10
7秒前
9秒前
科研通AI2S应助Rubia采纳,获得10
10秒前
12秒前
12秒前
12秒前
Hemingwayway发布了新的文献求助10
12秒前
13秒前
13秒前
youzi完成签到,获得积分10
14秒前
14秒前
15秒前
幽默梦之发布了新的文献求助10
16秒前
畅畅儿歌完成签到,获得积分10
16秒前
Helene完成签到 ,获得积分10
16秒前
徐翩跹发布了新的文献求助10
17秒前
17秒前
zsj发布了新的文献求助80
18秒前
18秒前
等待的小馒头完成签到 ,获得积分10
18秒前
tianyue发布了新的文献求助10
18秒前
yiban应助小飞采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532310
求助须知:如何正确求助?哪些是违规求助? 4621065
关于积分的说明 14576628
捐赠科研通 4560938
什么是DOI,文献DOI怎么找? 2499025
邀请新用户注册赠送积分活动 1479001
关于科研通互助平台的介绍 1450265