Development of Prognostic Biomarkers by TMB-Guided WSI Analysis: A Two-Step Approach

计算机科学
作者
Xiangyu Liu,Zhenyu Liu,Ye Yan,Kai Wang,Aodi Wang,Xiongjun Ye,Liwei Wang,Wei Wei,Bao Li,Caixia Sun,Wei He,Xuehua Zhu,Zenan Liu,Jiangang Liu,Jian Lü,Jie Tian
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (4): 1780-1789 被引量:8
标识
DOI:10.1109/jbhi.2023.3249354
摘要

The rapid development of computational pathology has brought new opportunities for prognosis prediction using histopathological images. However, the existing deep learning frameworks lack exploration of the relationship between images and other prognostic information, resulting in poor interpretability. Tumor mutation burden (TMB) is a promising biomarker for predicting the survival outcomes of cancer patients, but its measurement is costly. Its heterogeneity may be reflected in histopathological images. Here, we report a two-step framework for prognostic prediction using whole-slide images (WSIs). First, the framework adopts a deep residual network to encode the phenotype of WSIs and classifies patient-level TMB by the deep features after aggregation and dimensionality reduction. Then, the patients' prognosis is stratified by the TMB-related information obtained during the classification model development. Deep learning feature extraction and TMB classification model construction are performed on an in-house dataset of 295 Haematoxylin & Eosin stained WSIs of clear cell renal cell carcinoma (ccRCC). The development and evaluation of prognostic biomarkers are performed on The Cancer Genome Atlas-Kidney ccRCC (TCGA-KIRC) project with 304 WSIs. Our framework achieves good performance for TMB classification with an area under the receiver operating characteristic curve (AUC) of 0.813 on the validation set. Through survival analysis, our proposed prognostic biomarkers can achieve significant stratification of patients' overall survival (P 0.05) and outperform the original TMB signature in risk stratification of patients with advanced disease. The results indicate the feasibility of mining TMB-related information from WSI to achieve stepwise prognosis prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助友好若南采纳,获得10
刚刚
2秒前
酷酷哑铃发布了新的文献求助10
5秒前
6秒前
张文博完成签到,获得积分10
7秒前
8秒前
科研通AI2S应助Sugarm采纳,获得10
9秒前
搜集达人应助YK采纳,获得10
11秒前
14秒前
黄橙子发布了新的文献求助10
14秒前
iNk应助科研通管家采纳,获得10
15秒前
研友_VZG7GZ应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
15秒前
16秒前
17秒前
研友_LNVX1L发布了新的文献求助20
17秒前
18秒前
强国复兴发布了新的文献求助10
18秒前
动点子智慧完成签到,获得积分10
20秒前
天天快乐应助牧紊采纳,获得10
22秒前
YK发布了新的文献求助10
22秒前
NXYZSM完成签到 ,获得积分10
25秒前
25秒前
科研通AI2S应助淡淡芷天采纳,获得10
25秒前
尊敬的半梅完成签到 ,获得积分10
25秒前
强国复兴完成签到,获得积分10
26秒前
26秒前
冷傲半邪完成签到,获得积分10
28秒前
28秒前
32秒前
32秒前
杨乐多发布了新的文献求助10
37秒前
38秒前
风中小刺猬完成签到,获得积分10
38秒前
好困应助jacky010采纳,获得10
39秒前
勤奋猎豹发布了新的文献求助10
42秒前
43秒前
一路硕博完成签到,获得积分10
45秒前
高分求助中
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Semiconductor Process Reliability in Practice 650
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
密码函数 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3209931
求助须知:如何正确求助?哪些是违规求助? 2859387
关于积分的说明 8119023
捐赠科研通 2524914
什么是DOI,文献DOI怎么找? 1358561
科研通“疑难数据库(出版商)”最低求助积分说明 642841
邀请新用户注册赠送积分活动 614601