亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

On-site instrumental seismic intensity prediction for China via recurrent neural network and transfer learning

地质学 学习迁移 人工神经网络 强度(物理) 震中 峰值地面加速度 循环神经网络 震级(天文学) 地震学 假警报 机器学习 地震动 计算机科学 天文 量子力学 物理
作者
Jingbao Zhu,Shanyou Li,Yongxiang Wei,Jindong Song
出处
期刊:Journal of Asian Earth Sciences [Elsevier]
卷期号:248: 105610-105610 被引量:10
标识
DOI:10.1016/j.jseaes.2023.105610
摘要

China is a seismically active country. Rapidly and accurately predicting instrumental seismic intensity at recording sites is important for China to mitigate earthquake disasters. According to the peak ground acceleration (PGA) and peak ground velocity (PGV) at recording stations, instrumental seismic intensity for China is measured. Here, for the robust and rapid on-site instrumental seismic intensity prediction, we propose a method combining recurrent neural network (RNN) and transfer learning to predict on-site PGA and PGV for China. For the same test dataset from China, our results indicate that at 3 s after P-wave arrival, the RNN models using transfer learning have better performance on PGA and PGV prediction than the baseline models, which include traditional methods based on the single parameter and RNN models without using transfer learning. Additionally, according to the predicted PGA and PGV of the RNN models using transfer learning, we statistically analyze the alarm performance based on the predicted on-site instrumental seismic intensity. Meanwhile, according to the proposed method in this paper, we test five destructive earthquake events (M ≥ 6.6) occurred in China. The results show that at 3 s after the P-wave arrival, the predicted instrumental seismic intensity is almost consistent with the observed instrumental seismic intensity, the predicted instrumental seismic intensity error is mainly within ± 1, and the mean absolute error is 0.78. Meanwhile, for the area near the epicenter, the percentage of successful alarms reaches 90%, and the percentage of false alarms is 0%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
7秒前
32秒前
33秒前
34秒前
35秒前
36秒前
36秒前
37秒前
37秒前
37秒前
37秒前
38秒前
39秒前
39秒前
39秒前
lawang发布了新的文献求助10
39秒前
lawang发布了新的文献求助10
39秒前
lawang发布了新的文献求助10
39秒前
lawang发布了新的文献求助10
42秒前
lawang发布了新的文献求助10
42秒前
lawang发布了新的文献求助10
42秒前
lawang发布了新的文献求助10
42秒前
lawang发布了新的文献求助10
42秒前
55秒前
yang发布了新的文献求助10
59秒前
1分钟前
桐桐应助科研通管家采纳,获得10
1分钟前
所所应助科研通管家采纳,获得10
1分钟前
Endymion发布了新的文献求助10
1分钟前
1分钟前
Endymion完成签到,获得积分10
1分钟前
激动的似狮完成签到,获得积分0
1分钟前
矜持完成签到 ,获得积分10
2分钟前
lalala完成签到,获得积分10
3分钟前
顾矜应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
平常以云完成签到 ,获得积分10
3分钟前
3分钟前
斯文败类应助lawang采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658113
求助须知:如何正确求助?哪些是违规求助? 4817258
关于积分的说明 15080877
捐赠科研通 4816425
什么是DOI,文献DOI怎么找? 2577351
邀请新用户注册赠送积分活动 1532344
关于科研通互助平台的介绍 1490957