On-site instrumental seismic intensity prediction for China via recurrent neural network and transfer learning

地质学 学习迁移 人工神经网络 强度(物理) 震中 峰值地面加速度 循环神经网络 震级(天文学) 地震学 假警报 机器学习 地震动 计算机科学 天文 量子力学 物理
作者
Jingbao Zhu,Shanyou Li,Yongxiang Wei,Jindong Song
出处
期刊:Journal of Asian Earth Sciences [Elsevier]
卷期号:248: 105610-105610 被引量:10
标识
DOI:10.1016/j.jseaes.2023.105610
摘要

China is a seismically active country. Rapidly and accurately predicting instrumental seismic intensity at recording sites is important for China to mitigate earthquake disasters. According to the peak ground acceleration (PGA) and peak ground velocity (PGV) at recording stations, instrumental seismic intensity for China is measured. Here, for the robust and rapid on-site instrumental seismic intensity prediction, we propose a method combining recurrent neural network (RNN) and transfer learning to predict on-site PGA and PGV for China. For the same test dataset from China, our results indicate that at 3 s after P-wave arrival, the RNN models using transfer learning have better performance on PGA and PGV prediction than the baseline models, which include traditional methods based on the single parameter and RNN models without using transfer learning. Additionally, according to the predicted PGA and PGV of the RNN models using transfer learning, we statistically analyze the alarm performance based on the predicted on-site instrumental seismic intensity. Meanwhile, according to the proposed method in this paper, we test five destructive earthquake events (M ≥ 6.6) occurred in China. The results show that at 3 s after the P-wave arrival, the predicted instrumental seismic intensity is almost consistent with the observed instrumental seismic intensity, the predicted instrumental seismic intensity error is mainly within ± 1, and the mean absolute error is 0.78. Meanwhile, for the area near the epicenter, the percentage of successful alarms reaches 90%, and the percentage of false alarms is 0%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
了了了完成签到,获得积分10
刚刚
脑洞疼应助李7采纳,获得10
刚刚
应钟二十完成签到 ,获得积分10
1秒前
范春艳完成签到,获得积分10
1秒前
2秒前
Jan完成签到,获得积分10
2秒前
LX完成签到,获得积分10
2秒前
无敌幸运星完成签到,获得积分10
2秒前
重回地球完成签到,获得积分10
3秒前
hellozijia完成签到,获得积分10
3秒前
迷人的大地完成签到,获得积分10
4秒前
mouxq发布了新的文献求助10
4秒前
闾丘惜萱完成签到,获得积分10
4秒前
烂漫夜梦完成签到,获得积分10
4秒前
奥斯卡完成签到,获得积分10
4秒前
烟花应助机智的阿振采纳,获得10
4秒前
乐天林完成签到 ,获得积分10
5秒前
Sherwin完成签到,获得积分10
5秒前
6秒前
111完成签到,获得积分10
6秒前
6秒前
云朵发布了新的文献求助10
6秒前
胡楠完成签到,获得积分10
7秒前
李健应助任性舞蹈采纳,获得10
7秒前
8秒前
qiqiqiqiqi完成签到 ,获得积分10
8秒前
积极的中蓝完成签到,获得积分10
8秒前
LUFFY完成签到,获得积分10
8秒前
9秒前
zywii发布了新的文献求助30
9秒前
ZIXUAN发布了新的文献求助10
9秒前
cijing完成签到,获得积分10
9秒前
10秒前
仗剑走天涯完成签到 ,获得积分10
10秒前
可爱的小树苗完成签到,获得积分10
10秒前
宋政枢完成签到,获得积分10
10秒前
饭神仙鱼完成签到,获得积分10
11秒前
小呆呆完成签到 ,获得积分10
11秒前
carbonhan完成签到,获得积分10
12秒前
hux完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5401990
求助须知:如何正确求助?哪些是违规求助? 4520650
关于积分的说明 14080780
捐赠科研通 4434091
什么是DOI,文献DOI怎么找? 2434394
邀请新用户注册赠送积分活动 1426601
关于科研通互助平台的介绍 1405349