On-site instrumental seismic intensity prediction for China via recurrent neural network and transfer learning

地质学 学习迁移 人工神经网络 强度(物理) 震中 峰值地面加速度 循环神经网络 震级(天文学) 地震学 假警报 机器学习 地震动 计算机科学 天文 量子力学 物理
作者
Jingbao Zhu,Shanyou Li,Yongxiang Wei,Jindong Song
出处
期刊:Journal of Asian Earth Sciences [Elsevier]
卷期号:248: 105610-105610 被引量:10
标识
DOI:10.1016/j.jseaes.2023.105610
摘要

China is a seismically active country. Rapidly and accurately predicting instrumental seismic intensity at recording sites is important for China to mitigate earthquake disasters. According to the peak ground acceleration (PGA) and peak ground velocity (PGV) at recording stations, instrumental seismic intensity for China is measured. Here, for the robust and rapid on-site instrumental seismic intensity prediction, we propose a method combining recurrent neural network (RNN) and transfer learning to predict on-site PGA and PGV for China. For the same test dataset from China, our results indicate that at 3 s after P-wave arrival, the RNN models using transfer learning have better performance on PGA and PGV prediction than the baseline models, which include traditional methods based on the single parameter and RNN models without using transfer learning. Additionally, according to the predicted PGA and PGV of the RNN models using transfer learning, we statistically analyze the alarm performance based on the predicted on-site instrumental seismic intensity. Meanwhile, according to the proposed method in this paper, we test five destructive earthquake events (M ≥ 6.6) occurred in China. The results show that at 3 s after the P-wave arrival, the predicted instrumental seismic intensity is almost consistent with the observed instrumental seismic intensity, the predicted instrumental seismic intensity error is mainly within ± 1, and the mean absolute error is 0.78. Meanwhile, for the area near the epicenter, the percentage of successful alarms reaches 90%, and the percentage of false alarms is 0%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ChatGPT发布了新的文献求助10
2秒前
李李李发布了新的文献求助10
2秒前
吕洺旭应助无能的丈夫采纳,获得10
3秒前
skyscraper完成签到,获得积分10
5秒前
6秒前
6秒前
shun完成签到,获得积分10
7秒前
善学以致用应助danli采纳,获得10
8秒前
平淡萍发布了新的文献求助20
9秒前
9秒前
Owen应助科研通管家采纳,获得10
9秒前
9秒前
Hello应助科研通管家采纳,获得10
9秒前
搜集达人应助科研通管家采纳,获得10
10秒前
李健应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
Owen应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
10秒前
Ava应助科研通管家采纳,获得10
10秒前
清新的一笑完成签到,获得积分10
11秒前
大恐龙的噗噗完成签到,获得积分10
11秒前
12秒前
letter发布了新的文献求助30
12秒前
zho应助123Y采纳,获得10
12秒前
大模型应助可爱的夏青采纳,获得10
14秒前
yunjian1583发布了新的文献求助10
14秒前
五木完成签到,获得积分10
15秒前
天天快乐应助sun采纳,获得10
15秒前
大白兔完成签到 ,获得积分10
15秒前
李小莉0419完成签到 ,获得积分10
15秒前
安静的眼神完成签到,获得积分10
16秒前
17秒前
阔达的丹萱完成签到,获得积分10
19秒前
脑洞疼应助闪闪穆采纳,获得10
20秒前
sun完成签到,获得积分10
21秒前
QUPY发布了新的文献求助10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5598801
求助须知:如何正确求助?哪些是违规求助? 4684195
关于积分的说明 14834179
捐赠科研通 4664847
什么是DOI,文献DOI怎么找? 2537406
邀请新用户注册赠送积分活动 1504909
关于科研通互助平台的介绍 1470655