On-site instrumental seismic intensity prediction for China via recurrent neural network and transfer learning

地质学 学习迁移 人工神经网络 强度(物理) 震中 峰值地面加速度 循环神经网络 震级(天文学) 地震学 假警报 机器学习 地震动 计算机科学 天文 量子力学 物理
作者
Jingbao Zhu,Shanyou Li,Yongxiang Wei,Jindong Song
出处
期刊:Journal of Asian Earth Sciences [Elsevier]
卷期号:248: 105610-105610 被引量:10
标识
DOI:10.1016/j.jseaes.2023.105610
摘要

China is a seismically active country. Rapidly and accurately predicting instrumental seismic intensity at recording sites is important for China to mitigate earthquake disasters. According to the peak ground acceleration (PGA) and peak ground velocity (PGV) at recording stations, instrumental seismic intensity for China is measured. Here, for the robust and rapid on-site instrumental seismic intensity prediction, we propose a method combining recurrent neural network (RNN) and transfer learning to predict on-site PGA and PGV for China. For the same test dataset from China, our results indicate that at 3 s after P-wave arrival, the RNN models using transfer learning have better performance on PGA and PGV prediction than the baseline models, which include traditional methods based on the single parameter and RNN models without using transfer learning. Additionally, according to the predicted PGA and PGV of the RNN models using transfer learning, we statistically analyze the alarm performance based on the predicted on-site instrumental seismic intensity. Meanwhile, according to the proposed method in this paper, we test five destructive earthquake events (M ≥ 6.6) occurred in China. The results show that at 3 s after the P-wave arrival, the predicted instrumental seismic intensity is almost consistent with the observed instrumental seismic intensity, the predicted instrumental seismic intensity error is mainly within ± 1, and the mean absolute error is 0.78. Meanwhile, for the area near the epicenter, the percentage of successful alarms reaches 90%, and the percentage of false alarms is 0%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
体贴鹰完成签到 ,获得积分10
刚刚
1秒前
JeremyYuan发布了新的文献求助30
1秒前
HOAN应助林青青采纳,获得30
2秒前
2秒前
2秒前
蓝色斑马发布了新的文献求助10
3秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
5秒前
苏su完成签到,获得积分10
5秒前
Arsenel发布了新的文献求助10
6秒前
仁爱水卉完成签到,获得积分10
6秒前
6秒前
6秒前
小蘑菇应助Hahn采纳,获得10
7秒前
8秒前
chengyu应助王小赵采纳,获得10
8秒前
李夭夭发布了新的文献求助10
8秒前
sha发布了新的文献求助10
8秒前
9秒前
是一颗甜橙完成签到,获得积分10
9秒前
6666发布了新的文献求助10
9秒前
Ava应助eznesug采纳,获得10
10秒前
10秒前
dandan完成签到,获得积分10
10秒前
蓁蓁发布了新的文献求助10
10秒前
梵凡发布了新的文献求助10
11秒前
11秒前
bobo发布了新的文献求助10
11秒前
ran完成签到,获得积分10
11秒前
12秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
丝绒发布了新的文献求助10
13秒前
李健应助砍柴少年采纳,获得10
13秒前
猫的毛完成签到,获得积分10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718285
求助须知:如何正确求助?哪些是违规求助? 5251746
关于积分的说明 15285174
捐赠科研通 4868514
什么是DOI,文献DOI怎么找? 2614220
邀请新用户注册赠送积分活动 1564054
关于科研通互助平台的介绍 1521548