On-site instrumental seismic intensity prediction for China via recurrent neural network and transfer learning

地质学 学习迁移 人工神经网络 强度(物理) 震中 峰值地面加速度 循环神经网络 震级(天文学) 地震学 假警报 机器学习 地震动 计算机科学 天文 量子力学 物理
作者
Jingbao Zhu,Shanyou Li,Yongxiang Wei,Jindong Song
出处
期刊:Journal of Asian Earth Sciences [Elsevier BV]
卷期号:248: 105610-105610 被引量:10
标识
DOI:10.1016/j.jseaes.2023.105610
摘要

China is a seismically active country. Rapidly and accurately predicting instrumental seismic intensity at recording sites is important for China to mitigate earthquake disasters. According to the peak ground acceleration (PGA) and peak ground velocity (PGV) at recording stations, instrumental seismic intensity for China is measured. Here, for the robust and rapid on-site instrumental seismic intensity prediction, we propose a method combining recurrent neural network (RNN) and transfer learning to predict on-site PGA and PGV for China. For the same test dataset from China, our results indicate that at 3 s after P-wave arrival, the RNN models using transfer learning have better performance on PGA and PGV prediction than the baseline models, which include traditional methods based on the single parameter and RNN models without using transfer learning. Additionally, according to the predicted PGA and PGV of the RNN models using transfer learning, we statistically analyze the alarm performance based on the predicted on-site instrumental seismic intensity. Meanwhile, according to the proposed method in this paper, we test five destructive earthquake events (M ≥ 6.6) occurred in China. The results show that at 3 s after the P-wave arrival, the predicted instrumental seismic intensity is almost consistent with the observed instrumental seismic intensity, the predicted instrumental seismic intensity error is mainly within ± 1, and the mean absolute error is 0.78. Meanwhile, for the area near the epicenter, the percentage of successful alarms reaches 90%, and the percentage of false alarms is 0%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助迷路的士晋采纳,获得10
刚刚
貔貅完成签到,获得积分10
刚刚
李健的小迷弟应助firefox采纳,获得10
1秒前
ZzRG发布了新的文献求助10
1秒前
SCH发布了新的文献求助10
1秒前
安安完成签到,获得积分10
2秒前
dog完成签到 ,获得积分10
3秒前
小二郎应助ailsa采纳,获得10
3秒前
呼呼呼完成签到,获得积分10
3秒前
3秒前
3秒前
小卷完成签到,获得积分10
4秒前
ff完成签到 ,获得积分10
4秒前
白野凛发布了新的文献求助10
4秒前
英姑应助zero采纳,获得10
4秒前
在水一方应助空白采纳,获得10
4秒前
4秒前
小屁孩完成签到,获得积分10
5秒前
5秒前
春夏秋冬发布了新的文献求助10
5秒前
麻师长完成签到,获得积分10
5秒前
5秒前
研友_VZG7GZ应助wjx采纳,获得10
6秒前
CC关注了科研通微信公众号
6秒前
zhui发布了新的文献求助10
7秒前
小青椒应助Ruby于采纳,获得50
7秒前
7秒前
完美世界应助简单的沛蓝采纳,获得10
7秒前
111完成签到,获得积分10
8秒前
ywhys完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
10秒前
langzhiquan发布了新的文献求助10
10秒前
新新新发布了新的文献求助10
11秒前
YC完成签到,获得积分10
11秒前
一杯月光完成签到,获得积分10
11秒前
chongziccc完成签到 ,获得积分10
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5270881
求助须知:如何正确求助?哪些是违规求助? 4428854
关于积分的说明 13786375
捐赠科研通 4306781
什么是DOI,文献DOI怎么找? 2363258
邀请新用户注册赠送积分活动 1358936
关于科研通互助平台的介绍 1321862