Trajectory planning for a 6-axis robotic arm with particle swarm optimization algorithm

粒子群优化 计算机科学 弹道 机械臂 运动学 职位(财务) 运动规划 笛卡尔坐标系 机电一体化 点(几何) 轨迹优化 机器人 MATLAB语言 多项式的 控制理论(社会学) 算法 数学优化 人工智能 数学 最优控制 控制(管理) 物理 天文 数学分析 几何学 财务 经典力学 经济 操作系统
作者
Özge EKREM,Bekir Aksoy
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:122: 106099-106099 被引量:43
标识
DOI:10.1016/j.engappai.2023.106099
摘要

Robotic arms, which are favored for usage in both large- and small-scale industrial regions, run into issues with numerous limits between the starting and ending locations in the working space when attempting to complete a particular task. With the solution to one of these problems, trajectory planning, the robotic arm manipulator can move from the starting point to the target point vibration-free, without hitting obstacles, and by choosing the shortest way. In this study, a robotic arm with 6 degrees of freedom, which is in the Mechatronics Engineering laboratory of Isparta University of Applied Sciences and whose prototype was realized by Acrome company, was used. In the study, the trajectory planning of the robotic arm was carried out using the MATLAB program and particle swarm optimization (PSO). Trajectory planning is developed using the PSO algorithm to determine the position of the robot at each point as it moves from its starting point to its target. Thus, time optimization was achieved by choosing the shortest path between the two points. Trajectory planning in joint space is aimed to ensure that the position, speed, and acceleration between the starting and ending points are continuous by using the fifth-order polynomial. The instant values of the joint variables used to determine the points followed by the manipulator were obtained by forward kinematics through the MATLAB program. Using forward kinematics, the position information of the manipulator was obtained by providing a transition from joint space to Cartesian space.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哒哒发布了新的文献求助10
刚刚
知行完成签到,获得积分10
刚刚
刚刚
1秒前
Yenom发布了新的文献求助10
1秒前
2秒前
滴滴发布了新的文献求助10
3秒前
心灵美发卡完成签到,获得积分10
3秒前
科目三应助浩浩大人采纳,获得10
4秒前
考虑考虑完成签到,获得积分10
4秒前
彪壮的刺猬完成签到,获得积分10
5秒前
杏花饼完成签到,获得积分10
5秒前
Ll发布了新的文献求助10
5秒前
5秒前
汉堡包应助啊娴仔采纳,获得10
6秒前
6秒前
珂伟完成签到,获得积分10
6秒前
鲜艳的帅哥完成签到,获得积分10
7秒前
wkjsdsg完成签到,获得积分10
7秒前
大七完成签到 ,获得积分10
7秒前
7秒前
jogrgr发布了新的文献求助10
8秒前
lll发布了新的文献求助10
9秒前
生气的鸡蛋完成签到,获得积分10
9秒前
qi发布了新的文献求助10
9秒前
zino发布了新的文献求助10
10秒前
10秒前
10秒前
stt发布了新的文献求助10
11秒前
小蘑菇应助杏花饼采纳,获得10
11秒前
海棠yiyi发布了新的文献求助50
11秒前
camellia完成签到 ,获得积分10
12秒前
12秒前
12秒前
田様应助柠木采纳,获得10
12秒前
12秒前
研友_VZG7GZ应助生气的鸡蛋采纳,获得10
13秒前
13秒前
13秒前
威武的万仇完成签到 ,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759