Integrated Detection and Imaging Algorithm for Radar Sparse Targets via CFAR-ADMM

杂乱 计算机科学 恒虚警率 正规化(语言学) 算法 合成孔径雷达 人工智能 压缩传感 雷达 模式识别(心理学) 电信
作者
Pucheng Li,Zegang Ding,Tianyi Zhang,Yangkai Wei,Yongpeng Gao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:3
标识
DOI:10.1109/tgrs.2023.3251732
摘要

Most research on sparsity-driven synthetic aperture radar (SAR) imaging has been carried out in ℓ 1 -norm regularization and considers that the SAR image contains only targets and noise, which ignores the clutter and seriously degrades classical algorithms. To address this problem, we propose an integrated detection and imaging algorithm for radar sparse targets with constant false alarm rate (CFAR) regularization by alternative direction method of multipliers (ADMM), called CFAR-ADMM, and we further introduce total variation (TV) regularization and propose the more robust CFAR-TV-ADMM. First, a more complete echo signal model which considers targets, the clutter, and the noise simultaneously is established. Then, inspired by the CFAR detection, a novel regularization with sparse target awareness is proposed. The proposed regularization can obtain the statistical characteristics of clutter and noise region by region, and distinguish whether the current cell contains the target effectively and accurately. Benefiting from this novel regularization, CFAR-ADMM and TV-CFAR-ADMM can not only realize the sparse imaging but also detect sparse targets simultaneously, which can reduce the propagation error caused by cascading processing and improve the solution accuracy. Finally, the proposed algorithm is verified by simulation data results, phase transition analysis, and real data experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chenxu981388发布了新的文献求助30
2秒前
3秒前
03发布了新的文献求助30
4秒前
4秒前
LSSW完成签到,获得积分10
5秒前
ironsilica发布了新的文献求助10
6秒前
FashionBoy应助驰驰采纳,获得10
7秒前
戳戳完成签到,获得积分10
7秒前
优秀的嚣发布了新的文献求助10
7秒前
8秒前
9秒前
Jon完成签到,获得积分10
9秒前
小小康康完成签到,获得积分10
10秒前
SUS发布了新的文献求助10
10秒前
13秒前
之星君发布了新的文献求助10
14秒前
上官若男应助Jon采纳,获得10
14秒前
Ava应助魏无羡采纳,获得10
14秒前
NexusExplorer应助焦焦采纳,获得10
14秒前
leeOOO完成签到,获得积分10
16秒前
我是老大应助诚心的海豚采纳,获得10
18秒前
Andre完成签到,获得积分10
18秒前
隐形曼青应助忆梦采纳,获得10
19秒前
FiroZhang完成签到,获得积分0
21秒前
MISA完成签到 ,获得积分10
21秒前
23秒前
CodeCraft应助zzj采纳,获得10
30秒前
小二郎应助修利采纳,获得10
30秒前
景胜杰发布了新的文献求助10
30秒前
31秒前
FashionBoy应助高高建辉采纳,获得10
33秒前
34秒前
JamesPei应助youan采纳,获得10
34秒前
allrubbish完成签到,获得积分10
34秒前
江楠酒完成签到,获得积分10
35秒前
38秒前
Sandy完成签到,获得积分10
38秒前
39秒前
Lucas应助大力沛萍采纳,获得10
41秒前
42秒前
高分求助中
Востребованный временем 2500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
Encyclopedia of Mental Health Reference Work 500
The Restraining Hand: Captivity for Christ in China 500
Mercury and Silver Mining in the Colonial Atlantic 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3376496
求助须知:如何正确求助?哪些是违规求助? 2992527
关于积分的说明 8751269
捐赠科研通 2676850
什么是DOI,文献DOI怎么找? 1466311
科研通“疑难数据库(出版商)”最低求助积分说明 678247
邀请新用户注册赠送积分活动 669843