LightCTS: A Lightweight Framework for Correlated Time Series Forecasting

计算机科学 水准点(测量) 计算 数据挖掘 特征(语言学) 人工智能 系列(地层学) 机器学习 计算机工程 算法 大地测量学 语言学 生物 哲学 古生物学 地理
作者
Zhichen Lai,Dalin Zhang,Huan Li,Claus Munk Jensen,Hua Liu,Zhao Yan
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2302.11974
摘要

Correlated time series (CTS) forecasting plays an essential role in many practical applications, such as traffic management and server load control. Many deep learning models have been proposed to improve the accuracy of CTS forecasting. However, while models have become increasingly complex and computationally intensive, they struggle to improve accuracy. Pursuing a different direction, this study aims instead to enable much more efficient, lightweight models that preserve accuracy while being able to be deployed on resource-constrained devices. To achieve this goal, we characterize popular CTS forecasting models and yield two observations that indicate directions for lightweight CTS forecasting. On this basis, we propose the LightCTS framework that adopts plain stacking of temporal and spatial operators instead of alternate stacking that is much more computationally expensive. Moreover, LightCTS features light temporal and spatial operator modules, called L-TCN and GL-Former, that offer improved computational efficiency without compromising their feature extraction capabilities. LightCTS also encompasses a last-shot compression scheme to reduce redundant temporal features and speed up subsequent computations. Experiments with single-step and multi-step forecasting benchmark datasets show that LightCTS is capable of nearly state-of-the-art accuracy at much reduced computational and storage overheads.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助阿童木采纳,获得10
1秒前
雷大帅完成签到 ,获得积分10
1秒前
2秒前
不筝完成签到,获得积分20
2秒前
3秒前
3秒前
4秒前
听白完成签到 ,获得积分10
5秒前
科研通AI2S应助wonder采纳,获得10
5秒前
漂亮钢铁侠应助yyjw采纳,获得15
6秒前
6秒前
6秒前
6秒前
6秒前
7秒前
小蘑菇应助帅气的绿凝采纳,获得10
9秒前
9秒前
10秒前
小马甲应助受伤芝麻采纳,获得10
10秒前
zhiyuan发布了新的文献求助10
11秒前
自信寒蕾发布了新的文献求助10
11秒前
飞云之下发布了新的文献求助10
11秒前
霸气的凝竹完成签到,获得积分10
11秒前
CHEN发布了新的文献求助10
11秒前
12秒前
冷艳如柏发布了新的文献求助10
12秒前
黄明霞发布了新的文献求助10
13秒前
14秒前
hcl发布了新的文献求助10
14秒前
marco完成签到 ,获得积分10
14秒前
15秒前
单薄碧灵完成签到 ,获得积分10
15秒前
Leyi发布了新的文献求助10
15秒前
科研通AI2S应助li采纳,获得10
15秒前
16秒前
18秒前
隐形曼青应助飞云之下采纳,获得30
18秒前
19秒前
熬夜拜拜发布了新的文献求助10
19秒前
cqy发布了新的文献求助10
19秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3247916
求助须知:如何正确求助?哪些是违规求助? 2891121
关于积分的说明 8266358
捐赠科研通 2559345
什么是DOI,文献DOI怎么找? 1388162
科研通“疑难数据库(出版商)”最低求助积分说明 650698
邀请新用户注册赠送积分活动 627590