Graph attention network with dynamic representation of relations for knowledge graph completion

计算机科学 理论计算机科学 图形 特征学习 利用 变压器 人工智能 计算机安全 量子力学 物理 电压
作者
Xin Zhang,Chunxia Zhang,Jingtao Guo,Cheng Peng,Zhendong Niu,Xindong Wu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:219: 119616-119616 被引量:20
标识
DOI:10.1016/j.eswa.2023.119616
摘要

Knowledge graph completion (KGC) aims to predict the missing element in a triple based on known triples or facts. Recently, plenty of representation learning methods for KGC have achieved the promising performance, especially ones based on graph neural networks and their variants. Those methods exploit local neighborhood information to update the embedding of target entities. However, the existing works have the following two problems. First, those approaches focus on the representation learning of entities, while the relation representation usually adopts a simple linear transformation, which cannot capture the distinctive semantic intensions of the same relation in different triples. Second, different types of entity information are simply combined together, resulting in the loss of global properties including the type and the global importance of entities, which is prone to cause over-smoothing phenomenon. To address these two problems, we propose a Graph Attention Network with Dynamic Representation of Relations and global information (DRR-GAT) for knowledge graph completion. Specifically, the task of dynamic representation of relations is to learn the distinctive representation of the same relation in different triples. This goal is achieved via a path Transformer. To this end, path Transformer is designed to take the path information as its input, where only those paths from the target entity to the neighborhood relations with the same type as the target relation are considered. Sequentially, the mechanism of global embeddings is incorporated into graph attention network to capture the global information of entities and relations. Experimental performance outperforms the state-of-the-art methods, indicating the effectiveness of our proposed approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助赣南橙采纳,获得10
1秒前
5秒前
上官若男应助jiyuehan666采纳,获得10
6秒前
cossen发布了新的文献求助10
9秒前
9秒前
14秒前
所所应助科研通管家采纳,获得10
15秒前
迟大猫应助科研通管家采纳,获得10
15秒前
桐桐应助科研通管家采纳,获得10
15秒前
迟大猫应助科研通管家采纳,获得10
15秒前
迟大猫应助科研通管家采纳,获得10
15秒前
15秒前
迟大猫应助科研通管家采纳,获得10
15秒前
迟大猫应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
迟大猫应助科研通管家采纳,获得10
16秒前
迟大猫应助科研通管家采纳,获得10
16秒前
Wuhuhu应助科研通管家采纳,获得10
16秒前
迟大猫应助科研通管家采纳,获得10
16秒前
Holland应助科研通管家采纳,获得10
16秒前
迟大猫应助科研通管家采纳,获得10
16秒前
迟大猫应助科研通管家采纳,获得10
16秒前
詹芷珊发布了新的文献求助10
16秒前
迟大猫应助科研通管家采纳,获得10
16秒前
迟大猫应助科研通管家采纳,获得10
16秒前
Holland应助科研通管家采纳,获得10
16秒前
ermu应助科研通管家采纳,获得10
16秒前
迟大猫应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得30
16秒前
CodeCraft应助科研通管家采纳,获得10
16秒前
迟大猫应助科研通管家采纳,获得10
16秒前
大个应助科研通管家采纳,获得10
17秒前
迟大猫应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
迟大猫应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
领导范儿应助科研通管家采纳,获得10
17秒前
Wuhuhu应助科研通管家采纳,获得10
17秒前
17秒前
司空豁应助科研通管家采纳,获得10
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672296
求助须知:如何正确求助?哪些是违规求助? 3228683
关于积分的说明 9781526
捐赠科研通 2939128
什么是DOI,文献DOI怎么找? 1610605
邀请新用户注册赠送积分活动 760682
科研通“疑难数据库(出版商)”最低求助积分说明 736174