Morphological prognosis prediction of choroid neovascularization from longitudinal SD‐OCT images

分割 计算机科学 人工智能 光学相干层析成像 脉络膜 均方误差 计算机视觉 Sørensen–骰子系数 循环神经网络 模式识别(心理学) 图像分割 人工神经网络 医学 眼科 视网膜 数学 统计 物理 光学
作者
Jiayan Shen,Zhongyue Chen,Yuanyuan Peng,Siqi Zhang,Chenan Xu,Weifang Zhu,Haiyun Liu,Xinjian Chen
出处
期刊:Medical Physics [Wiley]
卷期号:50 (8): 4839-4853 被引量:1
标识
DOI:10.1002/mp.16294
摘要

Choroid neovascularization (CNV) has no obvious symptoms in the early stage, but with its gradual expansion, leakage, rupture, and bleeding, it can cause vision loss and central scotoma. In some severe cases, it will lead to permanent visual impairment.Accurate prediction of disease progression can greatly help ophthalmologists to formulate appropriate treatment plans and prevent further deterioration of the disease. Therefore, we aim to predict the growth trend of CNV to help the attending physician judge the effectiveness of treatment.In this paper, we develop a CNN-based method for CNV growth prediction. To achieve this, we first design a registration network to rigidly register the spectral domain optical coherence tomography (SD-OCT) B-scans of each subject at different time points to eliminate retinal displacements of longitudinal data. Then, considering the correlation of longitudinal data, we propose a co-segmentation network with a correlation attention guidance (CAG) module to cooperatively segment CNV lesions of a group of follow-up images and use them as input for growth prediction. Finally, based on the above registration and segmentation networks, an encoder-recurrent-decoder framework is developed for CNV growth prediction, in which an attention-based gated recurrent unit (AGRU) is embedded as the recurrent neural network to recurrently learn robust representations.The registration network rigidly registers the follow-up images of patients to the reference images with a root mean square error (RMSE) of 6.754 pixels. And compared with other state-of-the-art segmentation methods, the proposed segmentation network achieves high performance with the Dice similarity coefficients (Dsc) of 85.27%. Based on the above experiments, the proposed growth prediction network can play a role in predicting the future CNV morphology, and the predicted CNV has a Dsc of 83.69% with the ground truth, which is significantly consistent with the actual follow-up visit.The proposed registration and segmentation networks provide the possibility for growth prediction. In addition, accurately predicting the growth of CNV enables us to know the efficacy of the drug against individuals in advance, creating opportunities for formulating appropriate treatment plans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助gwh采纳,获得10
刚刚
memory完成签到,获得积分10
2秒前
小蘑菇应助诚心的雅容采纳,获得10
2秒前
优秀含羞草完成签到,获得积分10
3秒前
张振宇完成签到 ,获得积分10
3秒前
无敌小天天完成签到 ,获得积分10
3秒前
狂野飞柏完成签到 ,获得积分10
3秒前
wsg发布了新的文献求助10
4秒前
白馨雨完成签到,获得积分10
5秒前
安德鲁森完成签到 ,获得积分10
5秒前
6秒前
7秒前
小周碎碎念完成签到,获得积分10
7秒前
8秒前
子车代芙完成签到,获得积分10
9秒前
9秒前
SDY完成签到 ,获得积分10
9秒前
10秒前
鲤鱼小蕾完成签到,获得积分10
10秒前
半分青蓝发布了新的文献求助10
10秒前
脑洞疼应助tulips采纳,获得10
10秒前
windli发布了新的文献求助10
11秒前
张羊羔完成签到,获得积分10
11秒前
子民完成签到,获得积分10
12秒前
12秒前
Adel完成签到 ,获得积分10
13秒前
乔木发布了新的文献求助20
14秒前
wangp发布了新的文献求助10
14秒前
JX完成签到 ,获得积分10
14秒前
123应助洁净的文涛采纳,获得10
14秒前
夜猫发布了新的文献求助10
14秒前
苗条丹南完成签到 ,获得积分10
14秒前
你爱我我爱你完成签到 ,获得积分10
14秒前
雨夜茑萝完成签到 ,获得积分10
15秒前
16秒前
阿辉完成签到,获得积分10
16秒前
开始完成签到,获得积分10
16秒前
17秒前
无花果应助11采纳,获得30
19秒前
要减肥的砖头完成签到,获得积分10
19秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134083
求助须知:如何正确求助?哪些是违规求助? 2784918
关于积分的说明 7769341
捐赠科研通 2440444
什么是DOI,文献DOI怎么找? 1297415
科研通“疑难数据库(出版商)”最低求助积分说明 624959
版权声明 600792