Cancer–related symptoms among young and middle–aged women undergoing chemotherapy for breast cancer: Application of latent class analysis and network analysis

医学 乳腺癌 萧条(经济学) 焦虑 潜在类模型 感觉 心理干预 癌症 内科学 物理疗法 精神科 统计 宏观经济学 经济 社会心理学 数学 心理学
作者
Tingting Cai,Tingting Zhou,Qingmei Huang,Fulei Wu,Feixia Ni,Changrong Yuan
出处
期刊:European Journal of Oncology Nursing [Elsevier]
卷期号:63: 102287-102287 被引量:11
标识
DOI:10.1016/j.ejon.2023.102287
摘要

Abstract

Purpose

To identify subgroups and symptom networks of cancer–related symptoms for women under 60 years who are undergoing chemotherapy for breast cancer.

Methods

A cross–sectional survey in Mainland China was conducted between August 2020 and November 2021. Participants completed questionnaires that collected demographic and clinical characteristics and featured the PROMIS–57 and the PROMIS–Cognitive Function Short Form.

Results

A total of 1033 participants were included in the analysis, and three–class model was identified: "severe symptom group" (17.6%; Class 1), "moderately severe anxiety, depression, and pain–interference group" (38.0%; Class 2), and "mild symptom group" (44.4%; Class 3). Patients who were in menopause (OR = 3.05, P < .001), undergoing a combination of medical treatments (OR = 2.39, P = .003), and who had experienced complications (OR = 1.86, P = .009) were more likely to belong to Class 1. However, having two or more children increased the likelihood of belonging to Class 2. Additionally, network analysis showed that severe fatigue level was the core symptom among the full sample. As for Class 1, feeling helpless and severe fatigue level were the core symptoms. Regarding Class 2, the impact of pain interfere on the ability to participate in social activities and feeling hopeless were found to be the targeted symptoms for intervention.

Conclusion

Menopause, receiving a combination of medical treatments, and experiencing complications characterize the group with the most symptom disturbance. Moreover, different interventions should be performed for core symptoms in patients with varied symptom disturbances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fff完成签到,获得积分10
刚刚
1秒前
奋斗的珍完成签到,获得积分10
1秒前
乐于助人大好人完成签到 ,获得积分10
1秒前
HYN发布了新的文献求助10
3秒前
小小果妈发布了新的文献求助10
3秒前
shi发布了新的文献求助10
3秒前
qiqi发布了新的文献求助10
4秒前
斯文败类应助金木水火土采纳,获得10
4秒前
田様应助马大翔采纳,获得50
5秒前
ezio完成签到 ,获得积分0
6秒前
小黄应助苏桑焉采纳,获得10
7秒前
Fei发布了新的文献求助30
7秒前
8秒前
9秒前
9秒前
mervynzcy完成签到,获得积分10
10秒前
无限的寄真发布了新的文献求助100
11秒前
12秒前
iben发布了新的文献求助10
13秒前
不点儿发布了新的文献求助10
13秒前
过程美发布了新的文献求助10
13秒前
端庄斑马完成签到,获得积分10
15秒前
爱学习的小陈完成签到,获得积分10
15秒前
17秒前
18秒前
科研通AI2S应助拓跋从阳采纳,获得10
18秒前
Jeneration完成签到 ,获得积分10
18秒前
shellynnhe完成签到,获得积分10
18秒前
NexusExplorer应助大佛老爷采纳,获得10
19秒前
20秒前
共享精神应助onia采纳,获得10
21秒前
小马甲应助llzuo采纳,获得10
21秒前
21秒前
秋秋完成签到,获得积分10
23秒前
搜集达人应助cultromics采纳,获得10
24秒前
24秒前
cm发布了新的文献求助10
26秒前
26秒前
Ma完成签到,获得积分10
26秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136000
求助须知:如何正确求助?哪些是违规求助? 2786769
关于积分的说明 7779614
捐赠科研通 2443019
什么是DOI,文献DOI怎么找? 1298798
科研通“疑难数据库(出版商)”最低求助积分说明 625232
版权声明 600870