Left Atrial Strain in the Assessment of Diastolic Function in Heart Failure: A Machine Learning Approach

心力衰竭 内科学 射血分数 心脏病学 医学 舒张期 舒张性心力衰竭 射血分数保留的心力衰竭 指南 机器学习 血压 计算机科学 病理
作者
Erberto Carluccio,Matteo Cameli,Andrea Rossi,Frank Lloyd Dini,Paolo Biagioli,Anna Mengoni,Francesca Jacoangeli,Giulia Elena Mandoli,Maria Concetta Pastore,Caterina Maffeis,Giuseppe Ambrosio
出处
期刊:Circulation-cardiovascular Imaging [Ovid Technologies (Wolters Kluwer)]
卷期号:16 (2) 被引量:28
标识
DOI:10.1161/circimaging.122.014605
摘要

Background: Diastolic dysfunction (DD) assessment in heart failure is still challenging. Peak atrial longitudinal strain (PALS) is strongly related to end-diastolic pressure and prognosis, but it is still not part of standard DD assessment. We tested the hypothesis that a machine learning approach would be useful to include PALS in DD classification and refine prognostic stratification. Methods: In a derivation cohort of 864 heart failure patients in sinus rhythm (age, 66.6±12 years; heart failure with reduced ejection fraction, n=541; heart failure with mildly reduced ejection fraction, n=129; heart failure with preserved ejection fraction, n=194), machine learning techniques were retrospectively applied to PALS and guideline-recommended diastolic variables. Outcome (death/heart failure rehospitalization) of the identified DD-clusters was compared with that by guidelines-based classification. To identify the best combination of variables able to classify patients in one of the identified DD-clusters, classification and regression tree analysis was applied (with DD-clusters as dependent variable and PALS plus guidelines-recommended diastolic variables as explanatory variables). The algorithm was subsequently validated in a prospective cohort of 189 heart failure outpatients (age, 65±13 years). Results: Three distinct echocardiographic DD-clusters were identified (cluster-1, n=212; cluster-2, n=376; cluster-3 DD, n=276), with modest agreement with guidelines-recommended classification (kappa=0.40; P <0.001). DD-clusters were predicted by a simple algorithm including E/A ratio, left atrial volume index, E/e′ ratio, and PALS. After 36.5±29.4 months follow-up, 318 events occurred. Compared to guideline-based classification, DD-clusters showed a better association with events in multivariable models (C-index 0.720 versus 0.733, P =0.033; net reclassification improvement 0.166 [95% CI, 0.035–0.276], P =0.013), without interaction with ejection fraction category. In the validation cohort (median follow-up: 18.5 months), cluster-based classification better predicted outcome than guideline-based classification (C-index 0.80 versus 0.78, P =0.093). Conclusions: Integrating PALS by machine learning algorithm in DD classification improves risk stratification over recommended current criteria, regardless of ejection fraction status. This proof of concept study needs further validation of the proposed algorithm to assess generalizability to other populations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
简单完成签到 ,获得积分10
1秒前
1秒前
agnehc发布了新的文献求助10
2秒前
贰鸟应助aminminmin采纳,获得10
3秒前
yuliyixue发布了新的文献求助10
4秒前
JrPaleo101完成签到,获得积分10
5秒前
5秒前
5秒前
agnehc完成签到,获得积分10
9秒前
研友_Z7XY28发布了新的文献求助10
9秒前
小幸运R完成签到 ,获得积分10
10秒前
11秒前
zyxxxx完成签到,获得积分10
11秒前
11秒前
小金羊发布了新的文献求助10
11秒前
聪慧的太君完成签到,获得积分10
12秒前
冬冬完成签到,获得积分10
13秒前
Rikki完成签到,获得积分10
13秒前
充电宝应助eve采纳,获得10
13秒前
毅毅毅完成签到,获得积分10
13秒前
无花果应助醒醒采纳,获得10
14秒前
司空懿轩完成签到,获得积分10
14秒前
mawanyu完成签到 ,获得积分10
19秒前
19秒前
20秒前
时尚的萝完成签到 ,获得积分10
21秒前
计时器响了完成签到,获得积分10
22秒前
Wowyx完成签到,获得积分10
22秒前
BayBaya发布了新的文献求助10
22秒前
zho发布了新的文献求助10
23秒前
ddd完成签到 ,获得积分10
24秒前
斯文败类应助Ringobell采纳,获得10
24秒前
善学以致用应助Jenny采纳,获得10
24秒前
醒醒发布了新的文献求助10
25秒前
26秒前
26秒前
yuliyixue完成签到,获得积分10
28秒前
Omega完成签到,获得积分10
29秒前
相由心生发布了新的文献求助10
30秒前
30秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3473001
求助须知:如何正确求助?哪些是违规求助? 3065753
关于积分的说明 9095056
捐赠科研通 2756632
什么是DOI,文献DOI怎么找? 1512508
邀请新用户注册赠送积分活动 698970
科研通“疑难数据库(出版商)”最低求助积分说明 698688