A spatiotemporal attention network-based analysis of golden pompano school feeding behavior in an aquaculture vessel

水产养殖 人工智能 频道(广播) 过程(计算) 计算机科学 任务(项目管理) 感知 模式识别(心理学) 工程类 渔业 电信 生物 系统工程 操作系统 神经科学
作者
Kaijian Zheng,Renyou Yang,Rifu Li,Pengjie Guo,Liang Yang,Hao Qin
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:205: 107610-107610 被引量:10
标识
DOI:10.1016/j.compag.2022.107610
摘要

Behavior analysis and recognition of fish school have substantial management value and optimization implications for many aquaculture activities, such as feeding, which is currently the most expensive and polluting element of the aquaculture process. However, fish school behaviors analysis for complex marine environments is an extremely challenging task. Recent developments in artificial intelligence have demonstrated that Deep-Learning techniques can be ideally adapted for behavior analysis. Seeing such prospects, a spatiotemporal attention network (STAN) was proposed in this study to analyse the feeding states and behaviors of golden pompano school. Specifically, spatial images and optical flow images were created from videos using image processing techniques and the Lucas–Kanade algorithm. STAN was then used to extract intuitive and perceptual features from the intuitive channel and perceptual channel, respectively. Finally, the states of Feeding or Non-Feeding of the golden pompano school were established by the fusing channel with LSTM and Fully–connected networks. To evaluate the performance of the proposed method, quantitative and qualitative experiments were conducted. Results showed that STAN outperformed other models with a test accuracy of 97.97%. Further validation on a genuine golden pompano farming vessel was implemented, showing that the STAN architecture delivers state-of-the-art accuracy in the task of analysing feeding behavior for golden pompano school in aquaculture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
llewis完成签到,获得积分10
1秒前
情怀应助学海驰航采纳,获得10
2秒前
Skyyi完成签到,获得积分10
3秒前
陈陈发布了新的文献求助10
3秒前
3秒前
成就觅翠发布了新的文献求助10
3秒前
思源应助孤独梦安采纳,获得10
4秒前
4秒前
顾矜应助LL采纳,获得10
4秒前
centlay发布了新的文献求助10
5秒前
7秒前
Skyyi发布了新的文献求助10
7秒前
Sli完成签到,获得积分10
8秒前
达夫斯基完成签到,获得积分10
8秒前
汉堡包应助laxy采纳,获得10
9秒前
9秒前
YYY发布了新的文献求助10
10秒前
爽哥发布了新的文献求助30
10秒前
天天快乐应助成就觅翠采纳,获得10
10秒前
wyp0101完成签到,获得积分10
11秒前
11秒前
李健应助liu采纳,获得10
11秒前
12秒前
21发布了新的文献求助10
13秒前
小二郎应助白衣修身采纳,获得10
13秒前
piu完成签到,获得积分10
14秒前
完美世界应助有魅力鬼神采纳,获得10
14秒前
sun完成签到,获得积分20
15秒前
稳重无招发布了新的文献求助10
15秒前
大模型应助扎心采纳,获得10
15秒前
16秒前
八千完成签到,获得积分20
16秒前
可耐的无剑完成签到 ,获得积分10
17秒前
罗某人完成签到,获得积分20
17秒前
橙子发布了新的文献求助10
17秒前
Emiya发布了新的文献求助10
17秒前
Owen应助啦啦啦啦啦采纳,获得10
18秒前
SYLH应助锤子米采纳,获得10
18秒前
匹诺曹发布了新的文献求助10
19秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961321
求助须知:如何正确求助?哪些是违规求助? 3507666
关于积分的说明 11137254
捐赠科研通 3240099
什么是DOI,文献DOI怎么找? 1790749
邀请新用户注册赠送积分活动 872460
科研通“疑难数据库(出版商)”最低求助积分说明 803271