Identifying the collaborative scheduling areas between ride-hailing and traditional taxi services based on vehicle trajectory data

调度(生产过程) 运输工程 计算机科学 运筹学 运营管理 工程类
作者
Zhiyuan Zhao,Wei Yao,Sheng Wu,Xiping Yang,Qunyong Wu,Zhixiang Fang
出处
期刊:Journal of Transport Geography [Elsevier BV]
卷期号:107: 103544-103544 被引量:4
标识
DOI:10.1016/j.jtrangeo.2023.103544
摘要

Traditional taxi services (TTSs) play an important role in satisfying daily travel demands. The rapid growth of ride-hailing services (RHSs) has increased the convenience of customized travel. However, the volume of empty ride-hailing vehicles has increased. Identifying the collaborative scheduling areas (CoSAs) between RHSs and TTSs can further improve the efficiency of urban travel services. Therefore, we propose a method to identify CoSAs based on the travel demand and vehicle supply of TTSs and RHSs derived from trajectory data. We first optimize and make the temporal resolution of the trajectories of different types of vehicles uniform based on the shortest path algorithm. Then, the indicators describing travel demand and vehicle supply are defined and calculated. Finally, the areas with a high vehicle supply of one type and a low vehicle supply and high travel demand of the other type are identified as CoSAs. A dataset for Xiamen Island indicates that the CoSAs of TTSs to RHSs can provide potential routes to pick up passengers that are 41% and 11% shorter than the actual routes at 9:00 and 18:00, respectively. The constructed method can also improve the CoSA identification results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自信秋烟完成签到 ,获得积分10
1秒前
1秒前
1秒前
情怀应助简qiu采纳,获得10
1秒前
wuyu完成签到,获得积分10
1秒前
2秒前
丘比特应助橘子不酸采纳,获得10
2秒前
Jasper应助QZZ采纳,获得10
2秒前
易海之旅完成签到,获得积分10
2秒前
gosick应助张好好采纳,获得10
3秒前
tanstar27完成签到 ,获得积分10
3秒前
czh发布了新的文献求助10
3秒前
派大星发布了新的文献求助10
5秒前
失眠的凝竹完成签到,获得积分10
5秒前
5秒前
6秒前
qiudaoyu完成签到,获得积分10
6秒前
夏梦园完成签到,获得积分20
6秒前
咔什么嚓完成签到,获得积分10
7秒前
7秒前
日出发布了新的文献求助10
7秒前
8秒前
英俊的铭应助zhangliangfu采纳,获得10
8秒前
mettle完成签到,获得积分10
8秒前
时雨完成签到 ,获得积分10
9秒前
文静的哈密瓜完成签到 ,获得积分20
9秒前
xgs发布了新的文献求助30
9秒前
11秒前
11秒前
12秒前
12秒前
材料人完成签到,获得积分10
13秒前
13秒前
汉堡包应助田田田田采纳,获得10
14秒前
收手吧大哥应助左丘酬海采纳,获得10
14秒前
bbb完成签到,获得积分10
14秒前
17秒前
DamenS完成签到,获得积分10
17秒前
daoketuo完成签到,获得积分10
17秒前
zojoy完成签到,获得积分10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954228
求助须知:如何正确求助?哪些是违规求助? 3500273
关于积分的说明 11098748
捐赠科研通 3230782
什么是DOI,文献DOI怎么找? 1786143
邀请新用户注册赠送积分活动 869824
科研通“疑难数据库(出版商)”最低求助积分说明 801638