亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A hybrid-attention-ConvLSTM-based deep learning architecture to extract modal frequencies from limited data using transfer learning

判别式 情态动词 学习迁移 人工智能 滤波器(信号处理) 计算机科学 深度学习 帧(网络) 循环神经网络 模式识别(心理学) 过程(计算) 光学(聚焦) 噪音(视频) 加速度计 人工神经网络 计算机视觉 机器学习 图像(数学) 高分子化学 电信 化学 物理 光学 操作系统
作者
Mehrdad Shafiei Dizaji,Zhu Mao,Mulugeta Haile
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:187: 109949-109949 被引量:9
标识
DOI:10.1016/j.ymssp.2022.109949
摘要

This paper leverages each pixel of a picture acquired from a video camera, in which structural dynamic information is contained, in order to decompose spatiotemporal information from such a non-contact virtual sensor array in the same way as traditional accelerometers to extract structural modal frequencies. Attention-based deep neural network architecture is proposed in this work to better visualize the dynamic properties of structures in the existence of noise with a high resolution. The work combines CNNs and Recurrent Neural Networks (RNNs) to predict modal frequencies of structures from a series of consecutive images. High discriminative features of video frames are firstly extracted using the CNN, and then Conv-Long Short-Term Memory (ConvLSTM) is applied to further process the extracted features to capture the temporal dynamics in videos. The attention mechanisms are embedded in the network to ensure the model learns to focus selectively on those frames containing system dynamics. In particular, the proposed computer vision-based deep learning model takes the video of a vibrating structure as the input and successfully estimates the modal frequencies. Transfer learning is applied to cohere the knowledge learned from publicly available datasets to a much more sophisticated structure and estimate the resonant frequencies. The proposed algorithm optimizes the filter design for video processing in a fully automated way without any human intervention and can generalize and transfer that learned information to more complex structures. The model is trained using publicly available generic baseline data (Dataset A) consisting of several simple beam structures with different material properties and sizes and transferred the learned knowledge to unseen data (Dataset B) consisting of an independent turbine blade. It is concluded that the newly proposed method is more autonomous, accurate, and capable of generalizing the model to a new independent dataset using a transfer learning strategy, and the most advantage of the proposed approach is that the trained deep learning architecture has the capability of estimating the resonant frequencies for independent structures and extending the resonant frequency estimations to higher modes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助田柾国采纳,获得10
9秒前
文安完成签到 ,获得积分10
12秒前
顾君如完成签到 ,获得积分10
28秒前
君寻完成签到 ,获得积分10
43秒前
慕青应助科研通管家采纳,获得10
49秒前
乐乐应助dcy采纳,获得10
51秒前
ET发布了新的文献求助20
53秒前
1分钟前
wait完成签到 ,获得积分10
1分钟前
1分钟前
源妮儿儿发布了新的文献求助10
1分钟前
田柾国发布了新的文献求助10
1分钟前
1分钟前
科研通AI2S应助laochuangzi2hao采纳,获得10
1分钟前
1分钟前
志哥发布了新的文献求助10
1分钟前
史小霜发布了新的文献求助10
1分钟前
浅尝离白应助去去去去采纳,获得30
1分钟前
kardeem完成签到,获得积分10
1分钟前
1分钟前
dcy发布了新的文献求助10
2分钟前
赘婿应助老孟采纳,获得10
2分钟前
小白完成签到 ,获得积分10
2分钟前
KSung完成签到 ,获得积分10
2分钟前
CodeCraft应助dcy采纳,获得10
2分钟前
大模型应助hydwyh采纳,获得10
2分钟前
璟焱完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
老孟发布了新的文献求助10
2分钟前
巴拉发布了新的文献求助10
2分钟前
陨_0614完成签到 ,获得积分10
2分钟前
2分钟前
Hello应助科研通管家采纳,获得10
2分钟前
传奇3应助科研通管家采纳,获得10
2分钟前
慕青应助科研通管家采纳,获得10
2分钟前
英姑应助科研通管家采纳,获得50
2分钟前
姜淮完成签到 ,获得积分10
2分钟前
Vce April完成签到,获得积分10
2分钟前
2分钟前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 450
Die Gottesanbeterin: Mantis religiosa: 656 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164729
求助须知:如何正确求助?哪些是违规求助? 2815842
关于积分的说明 7910441
捐赠科研通 2475444
什么是DOI,文献DOI怎么找? 1318150
科研通“疑难数据库(出版商)”最低求助积分说明 632011
版权声明 602282