A hybrid-attention-ConvLSTM-based deep learning architecture to extract modal frequencies from limited data using transfer learning

判别式 情态动词 学习迁移 人工智能 滤波器(信号处理) 计算机科学 深度学习 帧(网络) 循环神经网络 模式识别(心理学) 过程(计算) 光学(聚焦) 噪音(视频) 加速度计 人工神经网络 计算机视觉 机器学习 图像(数学) 光学 物理 操作系统 电信 化学 高分子化学
作者
Mehrdad Shafiei Dizaji,Zhu Mao,Mulugeta Haile
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:187: 109949-109949 被引量:9
标识
DOI:10.1016/j.ymssp.2022.109949
摘要

This paper leverages each pixel of a picture acquired from a video camera, in which structural dynamic information is contained, in order to decompose spatiotemporal information from such a non-contact virtual sensor array in the same way as traditional accelerometers to extract structural modal frequencies. Attention-based deep neural network architecture is proposed in this work to better visualize the dynamic properties of structures in the existence of noise with a high resolution. The work combines CNNs and Recurrent Neural Networks (RNNs) to predict modal frequencies of structures from a series of consecutive images. High discriminative features of video frames are firstly extracted using the CNN, and then Conv-Long Short-Term Memory (ConvLSTM) is applied to further process the extracted features to capture the temporal dynamics in videos. The attention mechanisms are embedded in the network to ensure the model learns to focus selectively on those frames containing system dynamics. In particular, the proposed computer vision-based deep learning model takes the video of a vibrating structure as the input and successfully estimates the modal frequencies. Transfer learning is applied to cohere the knowledge learned from publicly available datasets to a much more sophisticated structure and estimate the resonant frequencies. The proposed algorithm optimizes the filter design for video processing in a fully automated way without any human intervention and can generalize and transfer that learned information to more complex structures. The model is trained using publicly available generic baseline data (Dataset A) consisting of several simple beam structures with different material properties and sizes and transferred the learned knowledge to unseen data (Dataset B) consisting of an independent turbine blade. It is concluded that the newly proposed method is more autonomous, accurate, and capable of generalizing the model to a new independent dataset using a transfer learning strategy, and the most advantage of the proposed approach is that the trained deep learning architecture has the capability of estimating the resonant frequencies for independent structures and extending the resonant frequency estimations to higher modes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
koxall完成签到,获得积分10
1秒前
杨杨发布了新的文献求助10
1秒前
嘿嘿应助张宁波采纳,获得10
2秒前
辣辣完成签到,获得积分10
2秒前
草学研究完成签到,获得积分10
2秒前
2秒前
3秒前
笨笨芝麻完成签到,获得积分10
3秒前
小伍完成签到,获得积分10
4秒前
4秒前
4秒前
炸炸桃完成签到,获得积分10
4秒前
gao完成签到,获得积分10
5秒前
lxb完成签到,获得积分10
5秒前
5秒前
5秒前
夹谷蕈完成签到 ,获得积分10
5秒前
俭朴的老黑完成签到,获得积分10
6秒前
6秒前
禾沐发布了新的文献求助10
6秒前
科研小锄头完成签到,获得积分10
7秒前
思源应助poppy采纳,获得10
7秒前
有点小卑鄙完成签到,获得积分10
7秒前
研友_VZG7GZ应助LTB采纳,获得10
7秒前
3242晶发布了新的文献求助10
8秒前
shelly完成签到,获得积分10
8秒前
金金金完成签到,获得积分10
9秒前
9秒前
9秒前
五五我发布了新的文献求助10
10秒前
小桑桑完成签到,获得积分10
10秒前
11秒前
LIUDAN发布了新的文献求助10
11秒前
11秒前
11秒前
Teirow完成签到,获得积分10
11秒前
11秒前
自由的山柏完成签到,获得积分10
11秒前
二橦完成签到 ,获得积分10
11秒前
天马行空完成签到,获得积分10
12秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5337533
求助须知:如何正确求助?哪些是违规求助? 4474745
关于积分的说明 13925710
捐赠科研通 4369749
什么是DOI,文献DOI怎么找? 2400934
邀请新用户注册赠送积分活动 1394041
关于科研通互助平台的介绍 1365885