A hybrid-attention-ConvLSTM-based deep learning architecture to extract modal frequencies from limited data using transfer learning

判别式 情态动词 学习迁移 人工智能 滤波器(信号处理) 计算机科学 深度学习 帧(网络) 循环神经网络 模式识别(心理学) 过程(计算) 光学(聚焦) 噪音(视频) 加速度计 人工神经网络 计算机视觉 机器学习 图像(数学) 光学 物理 操作系统 电信 化学 高分子化学
作者
Mehrdad Shafiei Dizaji,Zhu Mao,Mulugeta Haile
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:187: 109949-109949 被引量:9
标识
DOI:10.1016/j.ymssp.2022.109949
摘要

This paper leverages each pixel of a picture acquired from a video camera, in which structural dynamic information is contained, in order to decompose spatiotemporal information from such a non-contact virtual sensor array in the same way as traditional accelerometers to extract structural modal frequencies. Attention-based deep neural network architecture is proposed in this work to better visualize the dynamic properties of structures in the existence of noise with a high resolution. The work combines CNNs and Recurrent Neural Networks (RNNs) to predict modal frequencies of structures from a series of consecutive images. High discriminative features of video frames are firstly extracted using the CNN, and then Conv-Long Short-Term Memory (ConvLSTM) is applied to further process the extracted features to capture the temporal dynamics in videos. The attention mechanisms are embedded in the network to ensure the model learns to focus selectively on those frames containing system dynamics. In particular, the proposed computer vision-based deep learning model takes the video of a vibrating structure as the input and successfully estimates the modal frequencies. Transfer learning is applied to cohere the knowledge learned from publicly available datasets to a much more sophisticated structure and estimate the resonant frequencies. The proposed algorithm optimizes the filter design for video processing in a fully automated way without any human intervention and can generalize and transfer that learned information to more complex structures. The model is trained using publicly available generic baseline data (Dataset A) consisting of several simple beam structures with different material properties and sizes and transferred the learned knowledge to unseen data (Dataset B) consisting of an independent turbine blade. It is concluded that the newly proposed method is more autonomous, accurate, and capable of generalizing the model to a new independent dataset using a transfer learning strategy, and the most advantage of the proposed approach is that the trained deep learning architecture has the capability of estimating the resonant frequencies for independent structures and extending the resonant frequency estimations to higher modes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
明钟达完成签到 ,获得积分10
9秒前
byyyy完成签到,获得积分10
12秒前
高高的哈密瓜完成签到 ,获得积分10
16秒前
Rondab应助橙汁采纳,获得10
19秒前
读书的时候完成签到,获得积分10
21秒前
颜云尔完成签到,获得积分10
32秒前
孤独雨梅完成签到,获得积分10
35秒前
woobinhua完成签到 ,获得积分10
35秒前
雪落你看不见完成签到,获得积分10
37秒前
十月天秤完成签到,获得积分0
38秒前
依文完成签到,获得积分20
38秒前
ymr完成签到 ,获得积分10
39秒前
哦哦哦完成签到 ,获得积分10
40秒前
jzmupyj完成签到,获得积分10
40秒前
大橙子发布了新的文献求助10
43秒前
xdlongchem完成签到,获得积分10
44秒前
量子星尘发布了新的文献求助10
46秒前
小梦完成签到,获得积分10
47秒前
xuhang完成签到,获得积分10
47秒前
ZSHAN完成签到,获得积分10
48秒前
美满的机器猫完成签到,获得积分10
51秒前
王小磊完成签到,获得积分10
55秒前
谢花花完成签到 ,获得积分10
56秒前
57秒前
瓦罐完成签到 ,获得积分10
57秒前
扁舟灬完成签到,获得积分10
58秒前
Cpp完成签到 ,获得积分10
1分钟前
贤惠的老黑完成签到 ,获得积分10
1分钟前
ame1120发布了新的文献求助10
1分钟前
倦梦还完成签到,获得积分10
1分钟前
Sunrise完成签到,获得积分10
1分钟前
yyyy发布了新的文献求助10
1分钟前
自觉柠檬完成签到 ,获得积分10
1分钟前
ergatoid完成签到,获得积分10
1分钟前
Hao完成签到,获得积分10
1分钟前
月亮煮粥完成签到,获得积分10
1分钟前
欣欣完成签到 ,获得积分10
1分钟前
现代的紫霜完成签到,获得积分10
1分钟前
研学弟完成签到,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038128
求助须知:如何正确求助?哪些是违规求助? 3575831
关于积分的说明 11373827
捐赠科研通 3305610
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022