亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A hybrid-attention-ConvLSTM-based deep learning architecture to extract modal frequencies from limited data using transfer learning

判别式 情态动词 学习迁移 人工智能 滤波器(信号处理) 计算机科学 深度学习 帧(网络) 循环神经网络 模式识别(心理学) 过程(计算) 光学(聚焦) 噪音(视频) 加速度计 人工神经网络 计算机视觉 机器学习 图像(数学) 高分子化学 电信 化学 物理 光学 操作系统
作者
Mehrdad Shafiei Dizaji,Zhu Mao,Mulugeta Haile
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:187: 109949-109949 被引量:9
标识
DOI:10.1016/j.ymssp.2022.109949
摘要

This paper leverages each pixel of a picture acquired from a video camera, in which structural dynamic information is contained, in order to decompose spatiotemporal information from such a non-contact virtual sensor array in the same way as traditional accelerometers to extract structural modal frequencies. Attention-based deep neural network architecture is proposed in this work to better visualize the dynamic properties of structures in the existence of noise with a high resolution. The work combines CNNs and Recurrent Neural Networks (RNNs) to predict modal frequencies of structures from a series of consecutive images. High discriminative features of video frames are firstly extracted using the CNN, and then Conv-Long Short-Term Memory (ConvLSTM) is applied to further process the extracted features to capture the temporal dynamics in videos. The attention mechanisms are embedded in the network to ensure the model learns to focus selectively on those frames containing system dynamics. In particular, the proposed computer vision-based deep learning model takes the video of a vibrating structure as the input and successfully estimates the modal frequencies. Transfer learning is applied to cohere the knowledge learned from publicly available datasets to a much more sophisticated structure and estimate the resonant frequencies. The proposed algorithm optimizes the filter design for video processing in a fully automated way without any human intervention and can generalize and transfer that learned information to more complex structures. The model is trained using publicly available generic baseline data (Dataset A) consisting of several simple beam structures with different material properties and sizes and transferred the learned knowledge to unseen data (Dataset B) consisting of an independent turbine blade. It is concluded that the newly proposed method is more autonomous, accurate, and capable of generalizing the model to a new independent dataset using a transfer learning strategy, and the most advantage of the proposed approach is that the trained deep learning architecture has the capability of estimating the resonant frequencies for independent structures and extending the resonant frequency estimations to higher modes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
精灵夜雨完成签到 ,获得积分10
2秒前
小人物的坚持完成签到 ,获得积分10
3秒前
MchemG完成签到,获得积分0
7秒前
张KT完成签到,获得积分10
10秒前
打打应助没有伞的青春采纳,获得10
12秒前
读书的时候完成签到,获得积分20
21秒前
zhou完成签到 ,获得积分10
25秒前
Splaink完成签到 ,获得积分10
26秒前
香蕉觅云应助读书的时候采纳,获得10
33秒前
ZZZ完成签到,获得积分10
33秒前
田様应助ZZZ采纳,获得10
37秒前
37秒前
dbaxia完成签到,获得积分10
38秒前
howeVer完成签到 ,获得积分10
45秒前
缓慢采柳完成签到 ,获得积分10
47秒前
48秒前
应三问完成签到,获得积分10
49秒前
王尧完成签到,获得积分10
53秒前
Li完成签到,获得积分10
55秒前
在水一方应助沉默的倔驴采纳,获得10
57秒前
58秒前
努力搞科研完成签到,获得积分10
59秒前
59秒前
1分钟前
慕青应助小左采纳,获得10
1分钟前
无死何能生新颜完成签到,获得积分10
1分钟前
应三问发布了新的文献求助10
1分钟前
1分钟前
DJH发布了新的文献求助30
1分钟前
1分钟前
1分钟前
共享精神应助愉快的花卷采纳,获得10
1分钟前
wczkzzyfxh发布了新的文献求助80
1分钟前
小左完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
xbb88发布了新的文献求助10
1分钟前
wang发布了新的文献求助10
1分钟前
Lucas应助鲸落采纳,获得10
1分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746398
求助须知:如何正确求助?哪些是违规求助? 5433766
关于积分的说明 15355339
捐赠科研通 4886348
什么是DOI,文献DOI怎么找? 2627202
邀请新用户注册赠送积分活动 1575687
关于科研通互助平台的介绍 1532420