A hybrid-attention-ConvLSTM-based deep learning architecture to extract modal frequencies from limited data using transfer learning

判别式 情态动词 学习迁移 人工智能 滤波器(信号处理) 计算机科学 深度学习 帧(网络) 循环神经网络 模式识别(心理学) 过程(计算) 光学(聚焦) 噪音(视频) 加速度计 人工神经网络 计算机视觉 机器学习 图像(数学) 光学 物理 操作系统 电信 化学 高分子化学
作者
Mehrdad Shafiei Dizaji,Zhu Mao,Mulugeta Haile
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:187: 109949-109949 被引量:9
标识
DOI:10.1016/j.ymssp.2022.109949
摘要

This paper leverages each pixel of a picture acquired from a video camera, in which structural dynamic information is contained, in order to decompose spatiotemporal information from such a non-contact virtual sensor array in the same way as traditional accelerometers to extract structural modal frequencies. Attention-based deep neural network architecture is proposed in this work to better visualize the dynamic properties of structures in the existence of noise with a high resolution. The work combines CNNs and Recurrent Neural Networks (RNNs) to predict modal frequencies of structures from a series of consecutive images. High discriminative features of video frames are firstly extracted using the CNN, and then Conv-Long Short-Term Memory (ConvLSTM) is applied to further process the extracted features to capture the temporal dynamics in videos. The attention mechanisms are embedded in the network to ensure the model learns to focus selectively on those frames containing system dynamics. In particular, the proposed computer vision-based deep learning model takes the video of a vibrating structure as the input and successfully estimates the modal frequencies. Transfer learning is applied to cohere the knowledge learned from publicly available datasets to a much more sophisticated structure and estimate the resonant frequencies. The proposed algorithm optimizes the filter design for video processing in a fully automated way without any human intervention and can generalize and transfer that learned information to more complex structures. The model is trained using publicly available generic baseline data (Dataset A) consisting of several simple beam structures with different material properties and sizes and transferred the learned knowledge to unseen data (Dataset B) consisting of an independent turbine blade. It is concluded that the newly proposed method is more autonomous, accurate, and capable of generalizing the model to a new independent dataset using a transfer learning strategy, and the most advantage of the proposed approach is that the trained deep learning architecture has the capability of estimating the resonant frequencies for independent structures and extending the resonant frequency estimations to higher modes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vivi发布了新的文献求助10
1秒前
格子完成签到,获得积分10
1秒前
lxcy0612完成签到,获得积分10
2秒前
yuan完成签到,获得积分10
2秒前
mickiller完成签到,获得积分10
2秒前
宁静致远QY完成签到,获得积分10
2秒前
简单的凡儿完成签到,获得积分10
3秒前
聪慧的石头完成签到,获得积分10
3秒前
ChiariRay完成签到,获得积分10
3秒前
璐璐完成签到 ,获得积分10
4秒前
机智的孤兰完成签到 ,获得积分10
4秒前
绿野仙踪完成签到,获得积分10
4秒前
4秒前
专注的水壶完成签到 ,获得积分10
4秒前
香蕉觅云应助Hydrogen采纳,获得10
5秒前
JamesPei应助ooo采纳,获得10
5秒前
7秒前
喜悦的水云完成签到 ,获得积分10
7秒前
钱念波完成签到,获得积分10
8秒前
逍遥自在完成签到,获得积分10
9秒前
倪小呆完成签到 ,获得积分10
9秒前
11秒前
山神厘子完成签到,获得积分10
11秒前
娇娇大王完成签到,获得积分10
12秒前
Zpear应助qhjqljqd采纳,获得10
13秒前
14秒前
16秒前
xiaxia42完成签到 ,获得积分10
17秒前
小蘑菇应助DIY101采纳,获得10
18秒前
Ashley完成签到 ,获得积分10
19秒前
Hydrogen发布了新的文献求助10
19秒前
Bioflying完成签到,获得积分10
19秒前
21秒前
爆米花应助无限的以亦采纳,获得10
22秒前
曾宪俊完成签到 ,获得积分10
23秒前
QZZ完成签到,获得积分10
24秒前
24秒前
离子电池完成签到,获得积分10
24秒前
留胡子的路灯完成签到,获得积分10
26秒前
silin完成签到,获得积分10
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968578
求助须知:如何正确求助?哪些是违规求助? 3513406
关于积分的说明 11167631
捐赠科研通 3248853
什么是DOI,文献DOI怎么找? 1794499
邀请新用户注册赠送积分活动 875150
科研通“疑难数据库(出版商)”最低求助积分说明 804671