免疫球蛋白E
化学
芹菜素
细胞因子
组胺
分子生物学
免疫学
药理学
生物
抗体
生物化学
抗氧化剂
类黄酮
作者
Huajing Li,Hongmei Zhang,Hua Zhao
摘要
Allergic rhinitis (AR) is an immunoglobulin E (IgE)-mediated immune inflammatory response that mainly affects the nasal mucosa. Currently, there is evidence that apigenin, as a flavonoid, has anti-allergic potential.In vitro, compound 48/80 and lipopolysaccharide (LPS) were used to induce mast cell activation and inflammation in HMC-1 cells. In vivo, ovalbumin (OVA) induced and stimulated AR in BALB/c mice. ELISA was used to detect the contents of β-hexosaminidase, histamine, eosinophil cationic protein (ECP), OVA-specific IgE, IgG1, and IgG2a, inflammatory factors in cells and mouse serum. Cell viability and apoptosis were measured with MTT and flow cytometry. Toll like receptor 4 (TLR4)/myeloid differentiation factor88 (MyD88)/Nuclear transcription factor-κB (NF-κB) pathway-related proteins in cells and mouse nasal mucosa tissues were analyzed with Western blotting. The levels of Th1 (IFN-γ) and Th2 (IL-4, IL-5, and IL-13) cytokines and Th1 (T-bet) and Th2 (GATA-3) specific transcription factors were also assessed. The ratio of Th1 (CD4+ IFN-γ+ ) / Th2 (CD4+ IL-4+ ) cells in mouse peripheral blood mononuclear cells was evaluated by flow cytometry.Apigenin significantly inhibited compound 48/80-induced secretion of β-hexosaminidase and histamine. Apigenin blocked LPS-induced decrease in cell viability and increase in cell apoptosis and inflammatory cytokine secretion by suppressing the activity of the TLR4/MyD88/NF-κB pathway. Apigenin treatment reduced the levels of OVA-specific IgE, IgG1 and IgG2a as well as β-hexosaminidase, histamine and ECP levels in mouse serum. Moreover, administration with apigenin decreased Th2 cytokine and transcription factor levels and increased Th1 cytokine and transcription factor levels, and promoted the ratio of Th1/Th2 cells in AR mice. Additionally, apigenin significantly alleviated nasal symptoms and nasal eosinophil infiltration in AR mice.Apigenin alleviates the inflammatory response of allergic rhinitis by inhibiting the activity of the TLR4/MyD88/NF-κB signaling pathway.
科研通智能强力驱动
Strongly Powered by AbleSci AI