亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CST: Convolutional Swin Transformer for detecting the degree and types of plant diseases

稳健性(进化) 植物病害 人工智能 计算机科学 机器学习 可靠性工程 工程类 生物技术 生物化学 化学 基因 生物
作者
Yifan Guo,Yanting Lan,Xiao Dong Chen
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:202: 107407-107407 被引量:44
标识
DOI:10.1016/j.compag.2022.107407
摘要

In modern agriculture, detecting and identifying plant diseases is a severe difficulty. Because plant diseases can cause major economic damage and endanger food safety. Due to the advancement of artificial intelligence technologies, numerous research projects have utilized photos in various methods to detect plant illnesses. However, noise and other factors are unavoidable in image capture, affecting detection accuracy. To overcome this problem, we presented a Convolutional Swin Transformer (CST) based on the Swin Transformer to recognize the degree and kind of disease. Using a novel convolutional design, the CST model proposed in this research can achieve both high detection accuracy and outstanding robustness. CST has an accuracy of 0.909 and 0.922 when detecting plant disease in a natural environment, 0.975 when identifying disease in a controlled environment, and 0.982 when identifying disease categories. It maintains accuracy of 0.795 even when detecting photos with 30% salt noise. The research results are likely to be used in natural plant disease monitoring systems to make them more effective and reliable. • A class of networks is designed to detect the degree and type of plant diseases. • Utilizing Swin Transformer as the network’s backbone. • Validating superior performance across three datasets. • The maximum improvement in accuracy is 25.2%. • Excellent robustness in detecting noisy images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liz完成签到,获得积分10
9秒前
小花小宝和阿飞完成签到 ,获得积分10
17秒前
20秒前
科研通AI6应助盛夏如花采纳,获得10
21秒前
27秒前
32秒前
46秒前
55155255完成签到,获得积分10
47秒前
慕青应助明亮紫易采纳,获得10
49秒前
纸鹤发布了新的文献求助10
49秒前
吱吱吱吱发布了新的文献求助10
50秒前
小橘子不小完成签到,获得积分10
53秒前
Ruby完成签到,获得积分10
53秒前
1分钟前
zhuyi_6695发布了新的文献求助10
1分钟前
kei完成签到 ,获得积分10
1分钟前
吃了吃了完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
勤恳依霜发布了新的文献求助10
1分钟前
hhhhhh应助科研通管家采纳,获得50
1分钟前
xiaohardy完成签到,获得积分10
1分钟前
勤恳依霜完成签到,获得积分10
1分钟前
英俊的铭应助Jack采纳,获得10
1分钟前
盛夏如花发布了新的文献求助10
1分钟前
budingman发布了新的文献求助10
1分钟前
Chen完成签到 ,获得积分10
1分钟前
健壮傲之完成签到 ,获得积分10
1分钟前
纸鹤发布了新的文献求助80
1分钟前
1分钟前
sunrise完成签到,获得积分10
2分钟前
汉堡包应助科研帽采纳,获得10
2分钟前
孙颖完成签到 ,获得积分10
2分钟前
Jack发布了新的文献求助10
2分钟前
2分钟前
Always发布了新的文献求助10
2分钟前
Steve完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
Steve关注了科研通微信公众号
2分钟前
2分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644525
求助须知:如何正确求助?哪些是违规求助? 4764376
关于积分的说明 15025234
捐赠科研通 4802924
什么是DOI,文献DOI怎么找? 2567703
邀请新用户注册赠送积分活动 1525363
关于科研通互助平台的介绍 1484826