CST: Convolutional Swin Transformer for detecting the degree and types of plant diseases

稳健性(进化) 植物病害 人工智能 计算机科学 机器学习 可靠性工程 工程类 生物技术 生物化学 化学 基因 生物
作者
Yifan Guo,Yanting Lan,Xiao Dong Chen
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:202: 107407-107407 被引量:44
标识
DOI:10.1016/j.compag.2022.107407
摘要

In modern agriculture, detecting and identifying plant diseases is a severe difficulty. Because plant diseases can cause major economic damage and endanger food safety. Due to the advancement of artificial intelligence technologies, numerous research projects have utilized photos in various methods to detect plant illnesses. However, noise and other factors are unavoidable in image capture, affecting detection accuracy. To overcome this problem, we presented a Convolutional Swin Transformer (CST) based on the Swin Transformer to recognize the degree and kind of disease. Using a novel convolutional design, the CST model proposed in this research can achieve both high detection accuracy and outstanding robustness. CST has an accuracy of 0.909 and 0.922 when detecting plant disease in a natural environment, 0.975 when identifying disease in a controlled environment, and 0.982 when identifying disease categories. It maintains accuracy of 0.795 even when detecting photos with 30% salt noise. The research results are likely to be used in natural plant disease monitoring systems to make them more effective and reliable. • A class of networks is designed to detect the degree and type of plant diseases. • Utilizing Swin Transformer as the network’s backbone. • Validating superior performance across three datasets. • The maximum improvement in accuracy is 25.2%. • Excellent robustness in detecting noisy images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cxt发布了新的文献求助10
1秒前
发发发布了新的文献求助10
1秒前
2秒前
浮游应助成就寄瑶采纳,获得10
2秒前
sherry完成签到 ,获得积分10
2秒前
2秒前
3秒前
Yuan发布了新的文献求助10
3秒前
yayayummy完成签到,获得积分10
3秒前
科目三应助谷粱紫槐采纳,获得10
4秒前
4秒前
诺贝尔候选人完成签到 ,获得积分10
5秒前
5秒前
6秒前
喵喵发布了新的文献求助10
7秒前
完美世界应助发发采纳,获得10
7秒前
星辰大海应助huhuodan采纳,获得10
8秒前
hr520824应助白一陈采纳,获得10
8秒前
淡淡的白羊完成签到 ,获得积分10
9秒前
Ryki发布了新的文献求助10
9秒前
Cheems发布了新的文献求助10
10秒前
DawudShan发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
乐观的思卉完成签到,获得积分10
12秒前
cc完成签到 ,获得积分10
12秒前
科研通AI2S应助闪亮的皮蛋采纳,获得10
13秒前
13秒前
小昊发布了新的文献求助10
13秒前
不二家的卡农完成签到,获得积分10
14秒前
15秒前
英俊的铭应助YutingLiu采纳,获得10
15秒前
llllliu完成签到,获得积分10
15秒前
闪闪绮山关注了科研通微信公众号
16秒前
17秒前
SciGPT应助不想看文献采纳,获得10
17秒前
DawudShan完成签到,获得积分10
17秒前
科研通AI2S应助cxt采纳,获得10
17秒前
17秒前
17秒前
enen发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5513655
求助须知:如何正确求助?哪些是违规求助? 4607855
关于积分的说明 14507128
捐赠科研通 4543421
什么是DOI,文献DOI怎么找? 2489541
邀请新用户注册赠送积分活动 1471503
关于科研通互助平台的介绍 1443477