CST: Convolutional Swin Transformer for detecting the degree and types of plant diseases

稳健性(进化) 植物病害 人工智能 计算机科学 机器学习 可靠性工程 工程类 生物技术 生物化学 化学 基因 生物
作者
Yifan Guo,Yanting Lan,Xiao Dong Chen
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:202: 107407-107407 被引量:44
标识
DOI:10.1016/j.compag.2022.107407
摘要

In modern agriculture, detecting and identifying plant diseases is a severe difficulty. Because plant diseases can cause major economic damage and endanger food safety. Due to the advancement of artificial intelligence technologies, numerous research projects have utilized photos in various methods to detect plant illnesses. However, noise and other factors are unavoidable in image capture, affecting detection accuracy. To overcome this problem, we presented a Convolutional Swin Transformer (CST) based on the Swin Transformer to recognize the degree and kind of disease. Using a novel convolutional design, the CST model proposed in this research can achieve both high detection accuracy and outstanding robustness. CST has an accuracy of 0.909 and 0.922 when detecting plant disease in a natural environment, 0.975 when identifying disease in a controlled environment, and 0.982 when identifying disease categories. It maintains accuracy of 0.795 even when detecting photos with 30% salt noise. The research results are likely to be used in natural plant disease monitoring systems to make them more effective and reliable. • A class of networks is designed to detect the degree and type of plant diseases. • Utilizing Swin Transformer as the network’s backbone. • Validating superior performance across three datasets. • The maximum improvement in accuracy is 25.2%. • Excellent robustness in detecting noisy images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
科研通AI6应助Baibai采纳,获得10
1秒前
WWW发布了新的文献求助10
2秒前
YYZLHMHM应助12138采纳,获得10
2秒前
运气爆棚发布了新的文献求助10
3秒前
howgoods完成签到 ,获得积分10
3秒前
looking完成签到,获得积分10
3秒前
gougoubao完成签到,获得积分10
3秒前
苹果夜梦完成签到 ,获得积分10
4秒前
4秒前
LL爱读书发布了新的文献求助10
4秒前
才是自由发布了新的文献求助10
5秒前
咖小啡完成签到,获得积分10
6秒前
che发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
8秒前
科研通AI6应助我要资料啊采纳,获得10
8秒前
余姚发布了新的文献求助10
10秒前
封芷完成签到,获得积分10
10秒前
dundun完成签到,获得积分10
11秒前
ding应助WWW采纳,获得10
11秒前
ding应助JKSMK采纳,获得10
12秒前
怕孤单的大米完成签到,获得积分10
15秒前
Liu完成签到,获得积分10
15秒前
土豆完成签到,获得积分10
15秒前
小蘑菇应助悲凉的新筠采纳,获得10
16秒前
山花花完成签到,获得积分10
17秒前
华仔应助Yyyyuy采纳,获得10
17秒前
乔乔那个孩子完成签到,获得积分10
17秒前
17秒前
KEYANMINGONG完成签到,获得积分10
18秒前
18秒前
123完成签到,获得积分10
19秒前
ppp完成签到,获得积分10
19秒前
成就映秋完成签到,获得积分10
19秒前
刘霆勋发布了新的文献求助10
19秒前
20秒前
huihui完成签到 ,获得积分10
21秒前
Tonson举报cheng求助涉嫌违规
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469224
求助须知:如何正确求助?哪些是违规求助? 4572331
关于积分的说明 14335257
捐赠科研通 4499207
什么是DOI,文献DOI怎么找? 2464985
邀请新用户注册赠送积分活动 1453533
关于科研通互助平台的介绍 1428051