CST: Convolutional Swin Transformer for detecting the degree and types of plant diseases

稳健性(进化) 植物病害 人工智能 计算机科学 机器学习 可靠性工程 工程类 生物技术 生物化学 化学 基因 生物
作者
Yifan Guo,Yanting Lan,Xiao Dong Chen
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:202: 107407-107407 被引量:44
标识
DOI:10.1016/j.compag.2022.107407
摘要

In modern agriculture, detecting and identifying plant diseases is a severe difficulty. Because plant diseases can cause major economic damage and endanger food safety. Due to the advancement of artificial intelligence technologies, numerous research projects have utilized photos in various methods to detect plant illnesses. However, noise and other factors are unavoidable in image capture, affecting detection accuracy. To overcome this problem, we presented a Convolutional Swin Transformer (CST) based on the Swin Transformer to recognize the degree and kind of disease. Using a novel convolutional design, the CST model proposed in this research can achieve both high detection accuracy and outstanding robustness. CST has an accuracy of 0.909 and 0.922 when detecting plant disease in a natural environment, 0.975 when identifying disease in a controlled environment, and 0.982 when identifying disease categories. It maintains accuracy of 0.795 even when detecting photos with 30% salt noise. The research results are likely to be used in natural plant disease monitoring systems to make them more effective and reliable. • A class of networks is designed to detect the degree and type of plant diseases. • Utilizing Swin Transformer as the network’s backbone. • Validating superior performance across three datasets. • The maximum improvement in accuracy is 25.2%. • Excellent robustness in detecting noisy images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助虾仁珍珠汤采纳,获得10
刚刚
CipherSage应助体贴雨真采纳,获得30
1秒前
许可证完成签到,获得积分10
3秒前
空12完成签到 ,获得积分10
4秒前
4秒前
隐形曼青应助火焰迷踪采纳,获得10
5秒前
5秒前
希望天下0贩的0应助nnnnn采纳,获得10
5秒前
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
Orange应助科研通管家采纳,获得10
7秒前
张原铭完成签到,获得积分10
7秒前
核桃应助科研通管家采纳,获得20
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
dreamlightzy应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
研友_VZG7GZ应助科研通管家采纳,获得30
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
mawanyu发布了新的文献求助10
8秒前
核桃应助科研通管家采纳,获得10
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
大个应助椒盐采纳,获得10
9秒前
9秒前
Dr_Zhang完成签到,获得积分10
10秒前
hyf完成签到,获得积分10
10秒前
明理友琴发布了新的文献求助10
11秒前
充电宝应助幽默千柔采纳,获得10
13秒前
15秒前
hyf发布了新的文献求助10
15秒前
16秒前
16秒前
17秒前
许可证发布了新的文献求助10
19秒前
三横完成签到 ,获得积分10
20秒前
sss发布了新的文献求助10
20秒前
柠栀发布了新的文献求助10
21秒前
lalala发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5309724
求助须知:如何正确求助?哪些是违规求助? 4454247
关于积分的说明 13859535
捐赠科研通 4342205
什么是DOI,文献DOI怎么找? 2384385
邀请新用户注册赠送积分活动 1378844
关于科研通互助平台的介绍 1347021