CST: Convolutional Swin Transformer for detecting the degree and types of plant diseases

稳健性(进化) 植物病害 人工智能 计算机科学 机器学习 可靠性工程 工程类 生物技术 生物化学 化学 基因 生物
作者
Yifan Guo,Yanting Lan,Xiao Dong Chen
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:202: 107407-107407 被引量:44
标识
DOI:10.1016/j.compag.2022.107407
摘要

In modern agriculture, detecting and identifying plant diseases is a severe difficulty. Because plant diseases can cause major economic damage and endanger food safety. Due to the advancement of artificial intelligence technologies, numerous research projects have utilized photos in various methods to detect plant illnesses. However, noise and other factors are unavoidable in image capture, affecting detection accuracy. To overcome this problem, we presented a Convolutional Swin Transformer (CST) based on the Swin Transformer to recognize the degree and kind of disease. Using a novel convolutional design, the CST model proposed in this research can achieve both high detection accuracy and outstanding robustness. CST has an accuracy of 0.909 and 0.922 when detecting plant disease in a natural environment, 0.975 when identifying disease in a controlled environment, and 0.982 when identifying disease categories. It maintains accuracy of 0.795 even when detecting photos with 30% salt noise. The research results are likely to be used in natural plant disease monitoring systems to make them more effective and reliable. • A class of networks is designed to detect the degree and type of plant diseases. • Utilizing Swin Transformer as the network’s backbone. • Validating superior performance across three datasets. • The maximum improvement in accuracy is 25.2%. • Excellent robustness in detecting noisy images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
miaomiao完成签到,获得积分10
刚刚
才下眉头完成签到,获得积分10
1秒前
英吉利25发布了新的文献求助10
2秒前
科研通AI6应助chenyufeng采纳,获得10
2秒前
qwert完成签到,获得积分10
2秒前
2秒前
小蘑菇应助迷路从波采纳,获得10
3秒前
u2u2完成签到,获得积分10
3秒前
林新宇发布了新的文献求助10
3秒前
一玥完成签到,获得积分10
3秒前
CNY完成签到 ,获得积分10
4秒前
xiaohan完成签到 ,获得积分20
4秒前
4秒前
tianzml0应助昵称未命名采纳,获得60
4秒前
QING完成签到,获得积分20
5秒前
5秒前
小孙的微信完成签到,获得积分10
6秒前
ziyue驳回了Jared应助
6秒前
勤奋初之发布了新的文献求助30
6秒前
youshower完成签到,获得积分10
7秒前
小鱼发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
口香糖探长完成签到 ,获得积分10
9秒前
ding应助开朗寻凝采纳,获得10
9秒前
9秒前
小溪苏完成签到 ,获得积分10
9秒前
9秒前
初染发布了新的文献求助10
9秒前
yznfly应助周小丁采纳,获得20
9秒前
吭吭菜菜完成签到,获得积分10
10秒前
11秒前
上官若男应助dezhen1991采纳,获得10
11秒前
时s发布了新的文献求助10
12秒前
YJ发布了新的文献求助10
12秒前
kk发布了新的文献求助20
12秒前
xiaohan关注了科研通微信公众号
12秒前
13秒前
九三发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525447
求助须知:如何正确求助?哪些是违规求助? 4615623
关于积分的说明 14549371
捐赠科研通 4553692
什么是DOI,文献DOI怎么找? 2495468
邀请新用户注册赠送积分活动 1475991
关于科研通互助平台的介绍 1447742