亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CST: Convolutional Swin Transformer for detecting the degree and types of plant diseases

稳健性(进化) 植物病害 人工智能 计算机科学 机器学习 可靠性工程 工程类 生物技术 生物化学 生物 基因 化学
作者
Yifan Guo,Yanting Lan,Xiao Dong Chen
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:202: 107407-107407 被引量:44
标识
DOI:10.1016/j.compag.2022.107407
摘要

In modern agriculture, detecting and identifying plant diseases is a severe difficulty. Because plant diseases can cause major economic damage and endanger food safety. Due to the advancement of artificial intelligence technologies, numerous research projects have utilized photos in various methods to detect plant illnesses. However, noise and other factors are unavoidable in image capture, affecting detection accuracy. To overcome this problem, we presented a Convolutional Swin Transformer (CST) based on the Swin Transformer to recognize the degree and kind of disease. Using a novel convolutional design, the CST model proposed in this research can achieve both high detection accuracy and outstanding robustness. CST has an accuracy of 0.909 and 0.922 when detecting plant disease in a natural environment, 0.975 when identifying disease in a controlled environment, and 0.982 when identifying disease categories. It maintains accuracy of 0.795 even when detecting photos with 30% salt noise. The research results are likely to be used in natural plant disease monitoring systems to make them more effective and reliable. • A class of networks is designed to detect the degree and type of plant diseases. • Utilizing Swin Transformer as the network’s backbone. • Validating superior performance across three datasets. • The maximum improvement in accuracy is 25.2%. • Excellent robustness in detecting noisy images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
直率的笑翠完成签到 ,获得积分10
6秒前
fire完成签到 ,获得积分10
9秒前
14秒前
嗯对完成签到 ,获得积分10
20秒前
一一发布了新的文献求助10
20秒前
28秒前
邓权发布了新的文献求助10
42秒前
左左应助一一采纳,获得10
43秒前
江姜酱先生应助qi采纳,获得10
55秒前
邓权完成签到,获得积分10
1分钟前
星辰大海应助一一采纳,获得10
1分钟前
CodeCraft应助shellyAPTX4869采纳,获得10
2分钟前
领导范儿应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
奔跑的小熊完成签到 ,获得积分10
2分钟前
左左发布了新的文献求助50
2分钟前
Orange应助shellyAPTX4869采纳,获得10
2分钟前
笑点低的孤丹完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
3分钟前
背后梦安发布了新的文献求助30
3分钟前
李子不是杏完成签到 ,获得积分10
3分钟前
科研duangduang完成签到 ,获得积分10
3分钟前
顾矜应助shellyAPTX4869采纳,获得10
3分钟前
3分钟前
3分钟前
4分钟前
我是老大应助科研通管家采纳,获得10
4分钟前
科目三应助科研通管家采纳,获得10
4分钟前
赘婿应助科研通管家采纳,获得10
4分钟前
无花果应助shellyAPTX4869采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968442
求助须知:如何正确求助?哪些是违规求助? 3513259
关于积分的说明 11167119
捐赠科研通 3248622
什么是DOI,文献DOI怎么找? 1794295
邀请新用户注册赠送积分活动 875027
科研通“疑难数据库(出版商)”最低求助积分说明 804629