MEANet: Magnitude estimation via physics-based features time series, an attention mechanism, and neural networks

震级(天文学) 人工神经网络 计算机科学 系列(地层学) 深度学习 人工智能 算法 物理 地质学 天体物理学 古生物学
作者
Jindong Song,Jingbao Zhu,Shanyou Li
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:88 (1): V33-V43 被引量:5
标识
DOI:10.1190/geo2022-0196.1
摘要

The traditional magnitude estimation method, which establishes a linear relationship between a single warning parameter and the magnitude, exhibits considerable scatter and underestimation. In addition, the extraction of features from raw waveforms by a deep learning network is a black box. To provide a more robust magnitude estimation and to construct a deep learning network with an interpretable input, in light of deep learning and earthquake rupture physics, we have established a magnitude estimation network model (MEANet) via the physics-based features time series, an attention mechanism, and neural networks. We use events with 4 ≤ M ≤ 7.5 that occur in Japan and the Sichuan-Yunnan region, China, to train and validate MEANet, and then use MEANet to test additional events. Our results find that MEANet has a more robust magnitude estimation than the traditional [Formula: see text] and [Formula: see text] methods, with a standard deviation of error of ±0.25 magnitude units at a single station with a 3 s P-wave time window. Within 10 s after the first station is triggered, based on the weighted average of the triggered stations, MEANet provides robust magnitude estimation without underestimation for events with 4 ≤ M ≤ 7.5. Our finding implies that the final magnitude is to some degree deterministic by the combination of deep learning and physics-based features. Meanwhile, MEANet might have potential for earthquake early warning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈过年完成签到 ,获得积分10
1秒前
31313发布了新的文献求助10
1秒前
科研宇完成签到,获得积分10
1秒前
烟花应助学疯采纳,获得10
2秒前
3秒前
浮生若梦发布了新的文献求助10
4秒前
4秒前
旺仔发布了新的文献求助10
6秒前
开心苠完成签到 ,获得积分10
6秒前
lang发布了新的文献求助20
7秒前
小马甲应助科研通管家采纳,获得10
8秒前
8R60d8应助科研通管家采纳,获得10
8秒前
科目三应助科研通管家采纳,获得10
8秒前
8R60d8应助科研通管家采纳,获得10
8秒前
wanci应助科研通管家采纳,获得10
8秒前
CHENG_2025应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
bkagyin应助科研通管家采纳,获得10
8秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
CHENG_2025应助科研通管家采纳,获得10
9秒前
8R60d8应助科研通管家采纳,获得10
9秒前
华仔应助科研通管家采纳,获得10
9秒前
9秒前
8R60d8应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
8R60d8应助科研通管家采纳,获得10
9秒前
皓月星辰发布了新的文献求助10
9秒前
所所应助千翎采纳,获得100
10秒前
谢佳冀发布了新的文献求助10
11秒前
无心的白桃关注了科研通微信公众号
11秒前
Rondab应助zhengwei采纳,获得30
13秒前
lzxucn完成签到,获得积分10
14秒前
15秒前
木木完成签到,获得积分20
17秒前
激昂的逊完成签到 ,获得积分10
18秒前
小甘看世界完成签到,获得积分0
20秒前
搜集达人应助科研小狗采纳,获得10
20秒前
小肥吴发布了新的文献求助10
20秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962882
求助须知:如何正确求助?哪些是违规求助? 3508809
关于积分的说明 11143356
捐赠科研通 3241711
什么是DOI,文献DOI怎么找? 1791651
邀请新用户注册赠送积分活动 873058
科研通“疑难数据库(出版商)”最低求助积分说明 803579