Hypothermia is commonly used to protect donor hearts during transplantation. However, patients transplanted with aged donor hearts still have severe myocardial injury and decreased survival rates, but the underlying mechanism remains unknown. Because aged hearts are not considered suitable for donation, the number of patients awaiting heart transplants is increasing. In this study, we examined whether hypothermic cardioprotection was attenuated in aged donor hearts during transplantation and evaluated potential therapeutic targets. Using a rat heart transplantation model, we found that hypothermic cardioprotection was impaired in aged donor hearts but preserved in young donor hearts. RNA-Seq showed that cold-inducible RNA-binding protein (Cirbp) expression was decreased in aged donor hearts, and these hearts showed severe ferroptosis after transplantation. The young donor hearts from Cirbp-KO rats exhibited attenuated hypothermic cardioprotection, but Cirbp overexpression in aged donor hearts ameliorated hypothermic cardioprotection. Cardiac proteomes revealed that dihydroorotate dehydrogenase (DHODH) expression was significantly decreased in Cirbp-KO donor hearts during transplantation. Consequently, DHODH-mediated ubiquinone reduction was compromised, thereby exacerbating cardiac lipid peroxidation and triggering ferroptosis after transplantation. A cardioplegic solution supplemented with CIRBP agonists improved hypothermic cardioprotection in aged donor hearts, indicating that this method has the potential to broaden the indications for using aged donor hearts in transplantation.