LHA-Net: A Lightweight and High-Accuracy Network for Road Surface Defect Detection

网(多面体) 曲面(拓扑) 计算机科学 环境科学 几何学 数学
作者
Gang Li,Cheng Zhang,Min Li,Delong Han,Mingle Zhou
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:9 (12): 7577-7591 被引量:11
标识
DOI:10.1109/tiv.2024.3400035
摘要

Road surface defect detection can effectively reduce maintenance costs, which is a critical component in road structural health monitoring. However, existing methods often face challenges in the heavy computational parameters and high-accuracy detection, limiting their practical applicability in resource-constrained industrial settings. To alleviate this gap, we propose a Lightweight and High-accuracy Network (LHA-Net) for road surface defect detection, consisting of three sub-networks for feature extraction, feature fusion, and detection head. First, the proposed Direction-guided Global Feature-Aware Module (DGFM) and the proposed Heterokernel Local Feature-Aware Module (HLFM) are used in the feature extraction sub-net to extract global and local features while minimizing network parameters. Second, we propose an Asymptotically Weighted Aggregation Mechanism (AWAM) in the feature fusion sub-net, which efficiently merges detailed and semantic features through asymptotic multi-scale fusion and weighted fusion at multiple stages. Third, we propose a Lightweight Decoupling Head (LDH) in the detection head sub-net to extract target location and category information by emphasizing defect details in horizontal and vertical dimensions. Finally, to improve the generalizability, we propose the RDD-CC dataset extension of RDD2022 using road images collected by automobiles in China. Compared with the well-established lightweight YOLOv8n, LHA -Net achieves comparable or superior mAP@.5 scores with gains of +0.8%, +0.5%, and +0.3% on RDD-CC, RDD-SCM, and RDD-SCD datasets, respectively. Remarkably, LHA-Net does so with only 2.5M parameters (reduced by 16%) and 5.6 GFLOPs (reduced the computational load by 30%). The code and datasets are available at https://github.com/ZCZST01/LHA-Net .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Niuniu完成签到,获得积分10
刚刚
裴裴驳回了珏晴应助
刚刚
1秒前
1秒前
1秒前
1秒前
Aprilapple完成签到,获得积分10
1秒前
2秒前
song发布了新的文献求助10
2秒前
兴奋的发卡完成签到 ,获得积分10
3秒前
自觉翠安应助qiuxiali123采纳,获得10
3秒前
5秒前
hezhuyou完成签到,获得积分20
5秒前
飞乐扣完成签到 ,获得积分10
5秒前
buno应助屈昭阳采纳,获得10
5秒前
优美的觅珍完成签到,获得积分20
5秒前
冯佳祥发布了新的文献求助10
5秒前
aa发布了新的文献求助10
5秒前
852应助一只肥牛采纳,获得10
6秒前
lewis17发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
伯赏夜南发布了新的文献求助10
6秒前
orixero应助Niuniu采纳,获得10
6秒前
雪雪子完成签到,获得积分10
7秒前
7秒前
7秒前
胖狗完成签到 ,获得积分10
7秒前
7秒前
8秒前
8秒前
9秒前
Owen应助edtaa采纳,获得10
9秒前
万能图书馆应助orange采纳,获得10
10秒前
Yu完成签到,获得积分10
10秒前
221发布了新的文献求助10
11秒前
znn发布了新的文献求助10
11秒前
11秒前
maq完成签到,获得积分10
11秒前
刚国忠发布了新的文献求助10
11秒前
zzz完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836