LHA-Net: A Lightweight and High-accuracy Network for Road Surface Defect Detection

网(多面体) 曲面(拓扑) 计算机科学 环境科学 几何学 数学
作者
Gang Li,Cheng Zhang,Min Li,Delong Han,Mingle Zhou
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:2
标识
DOI:10.1109/tiv.2024.3400035
摘要

Road surface defect detection can effectively reduce maintenance costs, which is a critical component in road structural health monitoring. However, existing methods often face challenges in the heavy computational parameters and high-accuracy detection, limiting their practical applicability in resource-constrained industrial settings. To alleviate this gap, we propose a Lightweight and High-accuracy Network (LHA-Net) for road surface defect detection, consisting of three sub-networks for feature extraction, feature fusion, and detection head. First, the proposed Direction-guided Global Feature-Aware Module (DGFM) and the proposed Heterokernel Local Feature-Aware Module (HLFM) are used in the feature extraction sub-net to extract global and local features while minimizing network parameters. Second, we propose an Asymptotically Weighted Aggregation Mechanism (AWAM) in the feature fusion sub-net, which efficiently merges detailed and semantic features through asymptotic multi-scale fusion and weighted fusion at multiple stages. Third, we propose a Lightweight Decoupling Head (LDH) in the detection head sub-net to extract target location and category information by emphasizing defect details in horizontal and vertical dimensions. Finally, to improve the generalizability, we propose the RDD-CC dataset extension of RDD2022 using road images collected by automobiles in China. Compared with the well-established lightweight YOLOv8n, LHA -Net achieves comparable or superior mAP@.5 scores with gains of +0.8%, +0.5%, and +0.3% on RDD-CC, RDD-SCM, and RDD-SCD datasets, respectively. Remarkably, LHA-Net does so with only 2.5M parameters (reduced by 16%) and 5.6 GFLOPs (reduced the computational load by 30%). The code and datasets are available at https://github.com/ZCZST01/LHA-Net .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助闪闪的摩托采纳,获得10
刚刚
BreezyGallery发布了新的文献求助10
刚刚
sss完成签到,获得积分10
刚刚
壮观寄文完成签到 ,获得积分10
刚刚
zhangkaixin完成签到,获得积分10
刚刚
1秒前
1111完成签到,获得积分10
2秒前
2秒前
swsx1317发布了新的文献求助10
3秒前
camellia发布了新的文献求助10
3秒前
拼搏思卉发布了新的文献求助10
3秒前
captin发布了新的文献求助10
3秒前
lzzj完成签到,获得积分10
3秒前
yannis2020发布了新的文献求助10
3秒前
孤独秋白完成签到,获得积分10
3秒前
安详绿草发布了新的文献求助10
3秒前
喵喵完成签到 ,获得积分10
3秒前
楼寒天发布了新的文献求助10
4秒前
陈陌陌完成签到,获得积分10
4秒前
CipherSage应助科研通管家采纳,获得20
5秒前
丘比特应助标致小伙采纳,获得10
5秒前
咸鱼好翻身完成签到,获得积分10
5秒前
NexusExplorer应助科研通管家采纳,获得30
5秒前
北北完成签到 ,获得积分10
5秒前
5秒前
1221211应助科研通管家采纳,获得10
5秒前
5秒前
prosperp应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
剑兰先生应助科研通管家采纳,获得200
5秒前
Judy发布了新的文献求助10
5秒前
Shengwj完成签到,获得积分10
6秒前
科研通AI2S应助科研通管家采纳,获得30
6秒前
Ava应助科研通管家采纳,获得10
6秒前
勤奋沛珊应助科研通管家采纳,获得10
6秒前
大模型应助南城雨落采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
6秒前
Owen应助科研通管家采纳,获得10
6秒前
852应助科研通管家采纳,获得10
6秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759