LHA-Net: A Lightweight and High-accuracy Network for Road Surface Defect Detection

网(多面体) 曲面(拓扑) 计算机科学 环境科学 几何学 数学
作者
Gang Li,Cheng Zhang,Min Li,Delong Han,Mingle Zhou
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:2
标识
DOI:10.1109/tiv.2024.3400035
摘要

Road surface defect detection can effectively reduce maintenance costs, which is a critical component in road structural health monitoring. However, existing methods often face challenges in the heavy computational parameters and high-accuracy detection, limiting their practical applicability in resource-constrained industrial settings. To alleviate this gap, we propose a Lightweight and High-accuracy Network (LHA-Net) for road surface defect detection, consisting of three sub-networks for feature extraction, feature fusion, and detection head. First, the proposed Direction-guided Global Feature-Aware Module (DGFM) and the proposed Heterokernel Local Feature-Aware Module (HLFM) are used in the feature extraction sub-net to extract global and local features while minimizing network parameters. Second, we propose an Asymptotically Weighted Aggregation Mechanism (AWAM) in the feature fusion sub-net, which efficiently merges detailed and semantic features through asymptotic multi-scale fusion and weighted fusion at multiple stages. Third, we propose a Lightweight Decoupling Head (LDH) in the detection head sub-net to extract target location and category information by emphasizing defect details in horizontal and vertical dimensions. Finally, to improve the generalizability, we propose the RDD-CC dataset extension of RDD2022 using road images collected by automobiles in China. Compared with the well-established lightweight YOLOv8n, LHA -Net achieves comparable or superior mAP@.5 scores with gains of +0.8%, +0.5%, and +0.3% on RDD-CC, RDD-SCM, and RDD-SCD datasets, respectively. Remarkably, LHA-Net does so with only 2.5M parameters (reduced by 16%) and 5.6 GFLOPs (reduced the computational load by 30%). The code and datasets are available at https://github.com/ZCZST01/LHA-Net .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花开发布了新的文献求助10
1秒前
yinshan完成签到 ,获得积分10
1秒前
11发布了新的文献求助10
3秒前
都是发布了新的文献求助10
4秒前
小二郎应助菠萝贝采纳,获得10
5秒前
佳佳完成签到,获得积分10
6秒前
InfoNinja应助邱邱采纳,获得30
6秒前
布鲁爱思完成签到,获得积分10
6秒前
踏实采波完成签到,获得积分10
6秒前
9秒前
Orange应助都是采纳,获得10
10秒前
12秒前
CARL发布了新的文献求助10
12秒前
11完成签到 ,获得积分10
16秒前
16秒前
Rockwei发布了新的文献求助10
16秒前
CARL完成签到,获得积分10
18秒前
20秒前
柔弱成危完成签到 ,获得积分10
20秒前
菠萝贝发布了新的文献求助10
22秒前
英俊的铭应助WZH采纳,获得10
25秒前
张景灿发布了新的文献求助10
25秒前
28秒前
Ava应助科研通管家采纳,获得10
28秒前
顾矜应助科研通管家采纳,获得10
28秒前
Owen应助科研通管家采纳,获得10
28秒前
在水一方应助科研通管家采纳,获得10
28秒前
慕青应助科研通管家采纳,获得10
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
28秒前
CipherSage应助baozi采纳,获得10
29秒前
envy完成签到,获得积分10
29秒前
李小伟发布了新的文献求助10
30秒前
fap完成签到,获得积分10
34秒前
34秒前
awu发布了新的文献求助20
34秒前
xxaqs完成签到,获得积分10
36秒前
田小胖发布了新的文献求助10
37秒前
热情诗云完成签到,获得积分10
38秒前
Brian_Fang完成签到,获得积分10
39秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145247
求助须知:如何正确求助?哪些是违规求助? 2796643
关于积分的说明 7820749
捐赠科研通 2452983
什么是DOI,文献DOI怎么找? 1305322
科研通“疑难数据库(出版商)”最低求助积分说明 627483
版权声明 601464