LHA-Net: A Lightweight and High-accuracy Network for Road Surface Defect Detection

网(多面体) 曲面(拓扑) 计算机科学 环境科学 几何学 数学
作者
Gang Li,Cheng Zhang,Min Li,Delong Han,Mingle Zhou
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:2
标识
DOI:10.1109/tiv.2024.3400035
摘要

Road surface defect detection can effectively reduce maintenance costs, which is a critical component in road structural health monitoring. However, existing methods often face challenges in the heavy computational parameters and high-accuracy detection, limiting their practical applicability in resource-constrained industrial settings. To alleviate this gap, we propose a Lightweight and High-accuracy Network (LHA-Net) for road surface defect detection, consisting of three sub-networks for feature extraction, feature fusion, and detection head. First, the proposed Direction-guided Global Feature-Aware Module (DGFM) and the proposed Heterokernel Local Feature-Aware Module (HLFM) are used in the feature extraction sub-net to extract global and local features while minimizing network parameters. Second, we propose an Asymptotically Weighted Aggregation Mechanism (AWAM) in the feature fusion sub-net, which efficiently merges detailed and semantic features through asymptotic multi-scale fusion and weighted fusion at multiple stages. Third, we propose a Lightweight Decoupling Head (LDH) in the detection head sub-net to extract target location and category information by emphasizing defect details in horizontal and vertical dimensions. Finally, to improve the generalizability, we propose the RDD-CC dataset extension of RDD2022 using road images collected by automobiles in China. Compared with the well-established lightweight YOLOv8n, LHA -Net achieves comparable or superior mAP@.5 scores with gains of +0.8%, +0.5%, and +0.3% on RDD-CC, RDD-SCM, and RDD-SCD datasets, respectively. Remarkably, LHA-Net does so with only 2.5M parameters (reduced by 16%) and 5.6 GFLOPs (reduced the computational load by 30%). The code and datasets are available at https://github.com/ZCZST01/LHA-Net .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
captainHc完成签到 ,获得积分10
1秒前
ma应助VIVIAN采纳,获得10
2秒前
林平之发布了新的文献求助10
2秒前
脑洞疼应助fwstu采纳,获得20
3秒前
CAOHOU应助收声采纳,获得10
3秒前
LL发布了新的文献求助10
3秒前
dy发布了新的文献求助10
5秒前
5秒前
1351567822应助昏睡的蟠桃采纳,获得50
5秒前
Leslie完成签到,获得积分10
5秒前
星辰大海应助qiyumeng采纳,获得10
7秒前
自由山槐发布了新的文献求助10
8秒前
酷酷薯片发布了新的文献求助10
8秒前
Zg8279发布了新的文献求助50
9秒前
量子星尘发布了新的文献求助10
11秒前
活泼的飞双完成签到,获得积分10
12秒前
13秒前
从容的子轩完成签到,获得积分10
13秒前
英俊的铭应助janan33采纳,获得10
13秒前
14秒前
15秒前
嘟嘟喂嘟嘟应助收声采纳,获得10
16秒前
16秒前
Re发布了新的文献求助10
18秒前
18秒前
NexusExplorer应助无辜紫菜采纳,获得10
18秒前
今后应助灰灰采纳,获得10
19秒前
19秒前
20秒前
21秒前
陈丽陈丽完成签到,获得积分10
21秒前
22秒前
23秒前
LL完成签到,获得积分10
24秒前
小潘同学发布了新的文献求助10
25秒前
落寞丹萱发布了新的文献求助10
25秒前
wschenau应助Re采纳,获得10
26秒前
螃螃发布了新的文献求助10
26秒前
loki完成签到,获得积分10
26秒前
z落水无痕发布了新的文献求助10
26秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4024340
求助须知:如何正确求助?哪些是违规求助? 3564210
关于积分的说明 11344678
捐赠科研通 3295369
什么是DOI,文献DOI怎么找? 1815104
邀请新用户注册赠送积分活动 889673
科研通“疑难数据库(出版商)”最低求助积分说明 813097