EXPRESS: Robust Demand Estimation with Customer Choice-Based Models for Sales Transaction Data

交易数据 数据库事务 估计 业务 计算机科学 交易成本 营销 产业组织 经济 财务 数据库 管理
作者
Sanghoon Cho,M.B. Ferguson,Jongho Im,Pelin Pekgün
出处
期刊:Production and Operations Management [Wiley]
标识
DOI:10.1177/10591478241258197
摘要

We develop a novel statistical method to estimate customer choice among a firm’s portfolio of offerings when the firm cannot directly observe customers who choose not to purchase any product. This censored demand problem is prevalent in many industries such as hotels, airlines, and retail. Although several methods have been proposed to address this problem, they require some level of data aggregation across arrivals and/or choice sets, which results in information loss and potentially biased estimates. Therefore, they have limited applicability in an environment where the prices of a firm’s portfolio of offerings vary over time and sometimes even across different customers. Our proposed method combines several desirable properties, which makes it a better fit for realistic datasets where the available choice sets or attributes of the products in the choice sets change over time. We consider two additional types of information for identification of our model parameters: (1) additional mild assumptions on the customers’ utility function, and (2) external information about a firm’s market share. We then develop a robust estimation procedure that accounts for inaccuracies in either information type and let the data determine the best approach. Through Monte Carlo simulations, we show that our approach provides promising predictions of customer choice behavior when compared with other generally used methods and clearly outperforms those methods in scenarios where the product prices change frequently over time. Utilizing a real hotel transaction dataset provided by Oracle Labs, we further illustrate the improved estimation accuracy of our method compared to benchmark methods. Relative to existing approaches for estimating customer choice-based models, our proposed methodology better suits environments employing dynamic pricing and personalized offering practices, such as hospitality or online retailing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1874完成签到,获得积分10
1秒前
碳水大王完成签到,获得积分10
1秒前
科目三应助阿刘不想学了采纳,获得10
1秒前
Hello应助momoni采纳,获得30
1秒前
4秒前
FashionBoy应助骑羊采纳,获得10
4秒前
5秒前
无聊的书包完成签到 ,获得积分10
5秒前
7秒前
李小宁完成签到,获得积分10
7秒前
7秒前
lyf完成签到,获得积分10
9秒前
琪凯定理完成签到,获得积分10
10秒前
11秒前
11秒前
李小宁发布了新的文献求助10
12秒前
qq发布了新的文献求助10
12秒前
12秒前
陶瓷小罐完成签到 ,获得积分10
13秒前
KEHUGE发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
伶俐送终完成签到,获得积分10
17秒前
17秒前
18秒前
yls123发布了新的文献求助10
19秒前
FashionBoy应助vv采纳,获得10
19秒前
量子星尘发布了新的文献求助30
20秒前
花呀花完成签到,获得积分20
21秒前
伶俐送终发布了新的文献求助10
21秒前
22秒前
23秒前
研友_VZG7GZ应助KEHUGE采纳,获得10
23秒前
KING121完成签到,获得积分10
24秒前
25秒前
25秒前
上官若男应助Julian采纳,获得10
25秒前
ZZW发布了新的文献求助10
25秒前
26秒前
26秒前
ziye发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735163
求助须知:如何正确求助?哪些是违规求助? 5358806
关于积分的说明 15328740
捐赠科研通 4879501
什么是DOI,文献DOI怎么找? 2621999
邀请新用户注册赠送积分活动 1571173
关于科研通互助平台的介绍 1527966