EXPRESS: Robust Demand Estimation with Customer Choice-Based Models for Sales Transaction Data

交易数据 数据库事务 估计 业务 计算机科学 交易成本 营销 产业组织 经济 财务 数据库 管理
作者
Sanghoon Cho,M.B. Ferguson,Jongho Im,Pelin Pekgün
出处
期刊:Production and Operations Management [Wiley]
标识
DOI:10.1177/10591478241258197
摘要

We develop a novel statistical method to estimate customer choice among a firm’s portfolio of offerings when the firm cannot directly observe customers who choose not to purchase any product. This censored demand problem is prevalent in many industries such as hotels, airlines, and retail. Although several methods have been proposed to address this problem, they require some level of data aggregation across arrivals and/or choice sets, which results in information loss and potentially biased estimates. Therefore, they have limited applicability in an environment where the prices of a firm’s portfolio of offerings vary over time and sometimes even across different customers. Our proposed method combines several desirable properties, which makes it a better fit for realistic datasets where the available choice sets or attributes of the products in the choice sets change over time. We consider two additional types of information for identification of our model parameters: (1) additional mild assumptions on the customers’ utility function, and (2) external information about a firm’s market share. We then develop a robust estimation procedure that accounts for inaccuracies in either information type and let the data determine the best approach. Through Monte Carlo simulations, we show that our approach provides promising predictions of customer choice behavior when compared with other generally used methods and clearly outperforms those methods in scenarios where the product prices change frequently over time. Utilizing a real hotel transaction dataset provided by Oracle Labs, we further illustrate the improved estimation accuracy of our method compared to benchmark methods. Relative to existing approaches for estimating customer choice-based models, our proposed methodology better suits environments employing dynamic pricing and personalized offering practices, such as hospitality or online retailing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
一期一会发布了新的文献求助10
2秒前
酷波er应助satchzhao采纳,获得10
2秒前
骆烙发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
Orange应助高晨焜采纳,获得10
4秒前
4秒前
乐乐应助PGao采纳,获得10
4秒前
4秒前
时舒完成签到 ,获得积分10
4秒前
无奈安筠完成签到 ,获得积分10
5秒前
小二郎应助snowdream采纳,获得10
6秒前
苹果煎蛋发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
8秒前
完美紫易发布了新的文献求助10
8秒前
小飞侠完成签到 ,获得积分10
8秒前
小鼠星球发布了新的文献求助10
10秒前
zx给zx的求助进行了留言
10秒前
阿伟啊发布了新的文献求助10
10秒前
10秒前
AaronDP完成签到,获得积分10
10秒前
大个应助camellia采纳,获得10
11秒前
11秒前
zuducyow完成签到,获得积分10
11秒前
11秒前
cgq完成签到,获得积分20
11秒前
wanci应助黄少阳采纳,获得10
12秒前
12秒前
bkagyin应助冯舒蕾采纳,获得10
12秒前
不知道叫啥完成签到,获得积分10
13秒前
13秒前
13秒前
14秒前
mayi完成签到,获得积分10
14秒前
15秒前
乐乐应助火火采纳,获得10
15秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5704813
求助须知:如何正确求助?哪些是违规求助? 5158878
关于积分的说明 15242939
捐赠科研通 4858662
什么是DOI,文献DOI怎么找? 2607392
邀请新用户注册赠送积分活动 1558393
关于科研通互助平台的介绍 1516137