亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

EXPRESS: Robust Demand Estimation with Customer Choice-Based Models for Sales Transaction Data

交易数据 数据库事务 估计 业务 计算机科学 交易成本 营销 产业组织 经济 财务 数据库 管理
作者
Sanghoon Cho,M.B. Ferguson,Jongho Im,Pelin Pekgün
出处
期刊:Production and Operations Management [Wiley]
标识
DOI:10.1177/10591478241258197
摘要

We develop a novel statistical method to estimate customer choice among a firm’s portfolio of offerings when the firm cannot directly observe customers who choose not to purchase any product. This censored demand problem is prevalent in many industries such as hotels, airlines, and retail. Although several methods have been proposed to address this problem, they require some level of data aggregation across arrivals and/or choice sets, which results in information loss and potentially biased estimates. Therefore, they have limited applicability in an environment where the prices of a firm’s portfolio of offerings vary over time and sometimes even across different customers. Our proposed method combines several desirable properties, which makes it a better fit for realistic datasets where the available choice sets or attributes of the products in the choice sets change over time. We consider two additional types of information for identification of our model parameters: (1) additional mild assumptions on the customers’ utility function, and (2) external information about a firm’s market share. We then develop a robust estimation procedure that accounts for inaccuracies in either information type and let the data determine the best approach. Through Monte Carlo simulations, we show that our approach provides promising predictions of customer choice behavior when compared with other generally used methods and clearly outperforms those methods in scenarios where the product prices change frequently over time. Utilizing a real hotel transaction dataset provided by Oracle Labs, we further illustrate the improved estimation accuracy of our method compared to benchmark methods. Relative to existing approaches for estimating customer choice-based models, our proposed methodology better suits environments employing dynamic pricing and personalized offering practices, such as hospitality or online retailing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呼啦啦发布了新的文献求助10
3秒前
66完成签到 ,获得积分10
9秒前
呼啦啦完成签到,获得积分20
10秒前
22秒前
风景园林发布了新的文献求助10
25秒前
SciGPT应助XX采纳,获得10
27秒前
世良发布了新的文献求助10
27秒前
嘤嘤怪完成签到,获得积分10
31秒前
Criminology34应助科研通管家采纳,获得10
31秒前
31秒前
隐形曼青应助科研通管家采纳,获得10
31秒前
ceeray23应助科研通管家采纳,获得10
31秒前
elliotzzz应助科研通管家采纳,获得10
31秒前
Criminology34应助科研通管家采纳,获得10
31秒前
Criminology34应助科研通管家采纳,获得10
31秒前
32秒前
44秒前
zh发布了新的文献求助10
48秒前
58秒前
真实的瑾瑜完成签到 ,获得积分10
1分钟前
YNHN发布了新的文献求助10
1分钟前
茄子完成签到,获得积分10
1分钟前
科研通AI6应助YNHN采纳,获得10
1分钟前
科研通AI6应助喷火球采纳,获得10
1分钟前
传奇3应助茄子采纳,获得10
1分钟前
VDC发布了新的文献求助10
1分钟前
田様应助浪里白条采纳,获得10
1分钟前
1分钟前
1分钟前
科研小新发布了新的文献求助10
1分钟前
小圆发布了新的文献求助10
1分钟前
2分钟前
李爱国应助科研小新采纳,获得10
2分钟前
Amber发布了新的文献求助10
2分钟前
2分钟前
2分钟前
月月发布了新的文献求助10
2分钟前
Anlocia完成签到 ,获得积分10
2分钟前
XX发布了新的文献求助10
2分钟前
ktw完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650695
求助须知:如何正确求助?哪些是违规求助? 4781473
关于积分的说明 15052510
捐赠科研通 4809531
什么是DOI,文献DOI怎么找? 2572352
邀请新用户注册赠送积分活动 1528481
关于科研通互助平台的介绍 1487362