EXPRESS: Robust Demand Estimation with Customer Choice-Based Models for Sales Transaction Data

交易数据 数据库事务 估计 业务 计算机科学 交易成本 营销 产业组织 经济 财务 数据库 管理
作者
Sanghoon Cho,M.B. Ferguson,Jongho Im,Pelin Pekgün
出处
期刊:Production and Operations Management [Wiley]
标识
DOI:10.1177/10591478241258197
摘要

We develop a novel statistical method to estimate customer choice among a firm’s portfolio of offerings when the firm cannot directly observe customers who choose not to purchase any product. This censored demand problem is prevalent in many industries such as hotels, airlines, and retail. Although several methods have been proposed to address this problem, they require some level of data aggregation across arrivals and/or choice sets, which results in information loss and potentially biased estimates. Therefore, they have limited applicability in an environment where the prices of a firm’s portfolio of offerings vary over time and sometimes even across different customers. Our proposed method combines several desirable properties, which makes it a better fit for realistic datasets where the available choice sets or attributes of the products in the choice sets change over time. We consider two additional types of information for identification of our model parameters: (1) additional mild assumptions on the customers’ utility function, and (2) external information about a firm’s market share. We then develop a robust estimation procedure that accounts for inaccuracies in either information type and let the data determine the best approach. Through Monte Carlo simulations, we show that our approach provides promising predictions of customer choice behavior when compared with other generally used methods and clearly outperforms those methods in scenarios where the product prices change frequently over time. Utilizing a real hotel transaction dataset provided by Oracle Labs, we further illustrate the improved estimation accuracy of our method compared to benchmark methods. Relative to existing approaches for estimating customer choice-based models, our proposed methodology better suits environments employing dynamic pricing and personalized offering practices, such as hospitality or online retailing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Jasper应助西子阳采纳,获得10
1秒前
蓝天应助稳重大山采纳,获得10
1秒前
云游归尘完成签到 ,获得积分10
3秒前
帆帆牛完成签到,获得积分10
3秒前
3秒前
阿峤发布了新的文献求助10
3秒前
Liuying2809发布了新的文献求助10
5秒前
科目三应助BBrian采纳,获得10
6秒前
善良的樱发布了新的文献求助10
7秒前
小乐发布了新的文献求助10
7秒前
8秒前
leeky完成签到,获得积分10
8秒前
10秒前
yb完成签到,获得积分10
10秒前
xiaole完成签到,获得积分10
10秒前
TEO应助Liu采纳,获得20
11秒前
梨炒栗子完成签到,获得积分10
11秒前
我爱科研科研也爱我完成签到,获得积分10
11秒前
Jasper应助西子阳采纳,获得10
12秒前
万物安生发布了新的文献求助10
12秒前
爆米花应助Mzb采纳,获得10
12秒前
斯文的斩完成签到,获得积分10
12秒前
wgt完成签到,获得积分10
13秒前
hhh完成签到,获得积分10
13秒前
zhousiyu发布了新的文献求助10
14秒前
14秒前
wgt发布了新的文献求助30
16秒前
xn201120驳回了TEO应助
17秒前
18秒前
20秒前
沉默的文完成签到,获得积分10
20秒前
gjl发布了新的文献求助20
21秒前
传奇3应助西子阳采纳,获得10
22秒前
奶糖爱果冻完成签到 ,获得积分10
23秒前
Ava应助布偶猫采纳,获得10
24秒前
24秒前
好运连连发布了新的文献求助10
25秒前
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4633293
求助须知:如何正确求助?哪些是违规求助? 4029304
关于积分的说明 12466863
捐赠科研通 3715514
什么是DOI,文献DOI怎么找? 2050190
邀请新用户注册赠送积分活动 1081753
科研通“疑难数据库(出版商)”最低求助积分说明 964055