EXPRESS: Robust Demand Estimation with Customer Choice-Based Models for Sales Transaction Data

交易数据 数据库事务 估计 业务 计算机科学 交易成本 营销 产业组织 经济 财务 数据库 管理
作者
Sanghoon Cho,M.B. Ferguson,Jongho Im,Pelin Pekgün
出处
期刊:Production and Operations Management [Wiley]
标识
DOI:10.1177/10591478241258197
摘要

We develop a novel statistical method to estimate customer choice among a firm’s portfolio of offerings when the firm cannot directly observe customers who choose not to purchase any product. This censored demand problem is prevalent in many industries such as hotels, airlines, and retail. Although several methods have been proposed to address this problem, they require some level of data aggregation across arrivals and/or choice sets, which results in information loss and potentially biased estimates. Therefore, they have limited applicability in an environment where the prices of a firm’s portfolio of offerings vary over time and sometimes even across different customers. Our proposed method combines several desirable properties, which makes it a better fit for realistic datasets where the available choice sets or attributes of the products in the choice sets change over time. We consider two additional types of information for identification of our model parameters: (1) additional mild assumptions on the customers’ utility function, and (2) external information about a firm’s market share. We then develop a robust estimation procedure that accounts for inaccuracies in either information type and let the data determine the best approach. Through Monte Carlo simulations, we show that our approach provides promising predictions of customer choice behavior when compared with other generally used methods and clearly outperforms those methods in scenarios where the product prices change frequently over time. Utilizing a real hotel transaction dataset provided by Oracle Labs, we further illustrate the improved estimation accuracy of our method compared to benchmark methods. Relative to existing approaches for estimating customer choice-based models, our proposed methodology better suits environments employing dynamic pricing and personalized offering practices, such as hospitality or online retailing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
cxwcn完成签到 ,获得积分10
2秒前
5秒前
5秒前
轩风发布了新的文献求助10
5秒前
快乐的风发布了新的文献求助10
6秒前
画清风完成签到,获得积分10
6秒前
6秒前
bnjay发布了新的文献求助50
7秒前
酷波er应助LANER采纳,获得10
7秒前
冷傲的xu完成签到,获得积分10
9秒前
10秒前
11秒前
Ava应助zzm采纳,获得10
12秒前
13秒前
zbw完成签到 ,获得积分20
13秒前
Lyla完成签到,获得积分10
13秒前
拼搏的败完成签到 ,获得积分10
14秒前
chf102完成签到,获得积分10
15秒前
快乐的风完成签到,获得积分20
16秒前
单薄的西装应助Abdory采纳,获得10
16秒前
16秒前
17秒前
17秒前
Lyla发布了新的文献求助10
17秒前
充电宝应助常乐的大宝剑采纳,获得10
18秒前
冷傲的夜香发布了新的文献求助200
18秒前
耘耔发布了新的文献求助30
18秒前
Babara完成签到,获得积分20
18秒前
搬砖的冰美式完成签到,获得积分10
19秒前
科研通AI2S应助婌旎采纳,获得10
19秒前
摩尔曼斯克港完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
20秒前
20秒前
传奇3应助pan采纳,获得10
20秒前
vv123456ha完成签到,获得积分10
20秒前
20秒前
Forest发布了新的文献求助10
21秒前
舒心莫言完成签到,获得积分10
21秒前
唐亿倩完成签到,获得积分10
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954521
求助须知:如何正确求助?哪些是违规求助? 3500590
关于积分的说明 11100070
捐赠科研通 3231090
什么是DOI,文献DOI怎么找? 1786258
邀请新用户注册赠送积分活动 869920
科研通“疑难数据库(出版商)”最低求助积分说明 801719