已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

EXPRESS: Robust Demand Estimation with Customer Choice-Based Models for Sales Transaction Data

交易数据 数据库事务 估计 业务 计算机科学 交易成本 营销 产业组织 经济 财务 数据库 管理
作者
Sanghoon Cho,M.B. Ferguson,Jongho Im,Pelin Pekgün
出处
期刊:Production and Operations Management [Wiley]
标识
DOI:10.1177/10591478241258197
摘要

We develop a novel statistical method to estimate customer choice among a firm’s portfolio of offerings when the firm cannot directly observe customers who choose not to purchase any product. This censored demand problem is prevalent in many industries such as hotels, airlines, and retail. Although several methods have been proposed to address this problem, they require some level of data aggregation across arrivals and/or choice sets, which results in information loss and potentially biased estimates. Therefore, they have limited applicability in an environment where the prices of a firm’s portfolio of offerings vary over time and sometimes even across different customers. Our proposed method combines several desirable properties, which makes it a better fit for realistic datasets where the available choice sets or attributes of the products in the choice sets change over time. We consider two additional types of information for identification of our model parameters: (1) additional mild assumptions on the customers’ utility function, and (2) external information about a firm’s market share. We then develop a robust estimation procedure that accounts for inaccuracies in either information type and let the data determine the best approach. Through Monte Carlo simulations, we show that our approach provides promising predictions of customer choice behavior when compared with other generally used methods and clearly outperforms those methods in scenarios where the product prices change frequently over time. Utilizing a real hotel transaction dataset provided by Oracle Labs, we further illustrate the improved estimation accuracy of our method compared to benchmark methods. Relative to existing approaches for estimating customer choice-based models, our proposed methodology better suits environments employing dynamic pricing and personalized offering practices, such as hospitality or online retailing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
miaomiao123完成签到 ,获得积分10
刚刚
liwen发布了新的文献求助10
1秒前
勤劳凌青发布了新的文献求助20
1秒前
小蛇玩完成签到,获得积分10
1秒前
小二郎应助佛光辉采纳,获得10
2秒前
3秒前
3秒前
科研通AI6应助111采纳,获得10
4秒前
脑洞疼应助阿狸采纳,获得10
6秒前
jiangmi完成签到,获得积分10
6秒前
Z100关注了科研通微信公众号
9秒前
Omni发布了新的文献求助10
12秒前
13秒前
在水一方应助TN采纳,获得10
13秒前
leesc94完成签到 ,获得积分10
14秒前
15秒前
hy完成签到 ,获得积分10
15秒前
青雉流云完成签到,获得积分10
16秒前
Li发布了新的文献求助10
19秒前
科研通AI6应助Tulipe采纳,获得10
21秒前
22秒前
永远完成签到,获得积分10
26秒前
阿狸发布了新的文献求助10
27秒前
Akim应助开放的千青采纳,获得10
28秒前
29秒前
科研通AI6应助火星上仰采纳,获得10
29秒前
31秒前
31秒前
33秒前
咕哒猫应助佛光辉采纳,获得10
35秒前
lutuantuan完成签到,获得积分10
35秒前
yznfly应助ljq采纳,获得200
37秒前
37秒前
阿狸完成签到,获得积分10
38秒前
Ykaor完成签到 ,获得积分10
38秒前
40秒前
皮皮完成签到 ,获得积分10
40秒前
ljq完成签到,获得积分10
41秒前
Rye发布了新的文献求助10
46秒前
梦梦完成签到,获得积分10
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627761
求助须知:如何正确求助?哪些是违规求助? 4714630
关于积分的说明 14963076
捐赠科研通 4785511
什么是DOI,文献DOI怎么找? 2555141
邀请新用户注册赠送积分活动 1516488
关于科研通互助平台的介绍 1476910