EXPRESS: Robust Demand Estimation with Customer Choice-Based Models for Sales Transaction Data

交易数据 数据库事务 估计 业务 计算机科学 交易成本 营销 产业组织 经济 财务 数据库 管理
作者
Sanghoon Cho,M.B. Ferguson,Jongho Im,Pelin Pekgün
出处
期刊:Production and Operations Management [Wiley]
标识
DOI:10.1177/10591478241258197
摘要

We develop a novel statistical method to estimate customer choice among a firm’s portfolio of offerings when the firm cannot directly observe customers who choose not to purchase any product. This censored demand problem is prevalent in many industries such as hotels, airlines, and retail. Although several methods have been proposed to address this problem, they require some level of data aggregation across arrivals and/or choice sets, which results in information loss and potentially biased estimates. Therefore, they have limited applicability in an environment where the prices of a firm’s portfolio of offerings vary over time and sometimes even across different customers. Our proposed method combines several desirable properties, which makes it a better fit for realistic datasets where the available choice sets or attributes of the products in the choice sets change over time. We consider two additional types of information for identification of our model parameters: (1) additional mild assumptions on the customers’ utility function, and (2) external information about a firm’s market share. We then develop a robust estimation procedure that accounts for inaccuracies in either information type and let the data determine the best approach. Through Monte Carlo simulations, we show that our approach provides promising predictions of customer choice behavior when compared with other generally used methods and clearly outperforms those methods in scenarios where the product prices change frequently over time. Utilizing a real hotel transaction dataset provided by Oracle Labs, we further illustrate the improved estimation accuracy of our method compared to benchmark methods. Relative to existing approaches for estimating customer choice-based models, our proposed methodology better suits environments employing dynamic pricing and personalized offering practices, such as hospitality or online retailing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ffeiffei发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
lsh2完成签到,获得积分10
1秒前
bkagyin应助chang采纳,获得10
1秒前
unt02发布了新的文献求助10
1秒前
apathy发布了新的文献求助10
2秒前
真陈发布了新的文献求助20
2秒前
面包发布了新的文献求助10
2秒前
llg发布了新的文献求助10
2秒前
2秒前
研友_pnx37L完成签到,获得积分10
2秒前
2秒前
2秒前
生动怀蝶完成签到,获得积分10
3秒前
木子发布了新的文献求助10
3秒前
3秒前
4秒前
西红柿发布了新的文献求助10
4秒前
小糖完成签到,获得积分10
4秒前
5秒前
廖思巧发布了新的文献求助10
5秒前
5秒前
羊笨笨发布了新的文献求助10
5秒前
5秒前
蓝颜发布了新的文献求助30
5秒前
5秒前
赘婿应助javascript采纳,获得10
6秒前
平常笑珊发布了新的文献求助10
6秒前
6秒前
贤惠的曼凝完成签到,获得积分10
7秒前
7秒前
Summer发布了新的文献求助10
7秒前
Magic麦发布了新的文献求助10
7秒前
我啊完成签到,获得积分10
7秒前
7秒前
8秒前
田様应助YellowStar采纳,获得50
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5435610
求助须知:如何正确求助?哪些是违规求助? 4547679
关于积分的说明 14210287
捐赠科研通 4467942
什么是DOI,文献DOI怎么找? 2448805
邀请新用户注册赠送积分活动 1439683
关于科研通互助平台的介绍 1416287