Enhanced-YOLOv8: A new small target detection model

计算机科学 人工智能
作者
Lai Wei,Tong Yifei
出处
期刊:Digital Signal Processing [Elsevier]
卷期号:153: 104611-104611 被引量:2
标识
DOI:10.1016/j.dsp.2024.104611
摘要

Small target detection is a very difficult task and remains one of the most challenging problems in computer vision due to variations in object shape, appearance and position, as well as the effects of lighting and occlusion during imaging. To improve the accuracy of the small target detection results, we propose a new small target detection model, Enhanced-YOLOv8. Firstly, a small target detection level (STDL) is added to the original effective feature layer of YOLOv8, which not only provides richer semantic information but also get more accurate target localization and bounding box accuracy. When detecting small targets, the detection accuracy can be improved by more detailed information. Then, the fusion convolutional block attention module (FCBAM) is proposed by introducing the position attention module (PAM) based on the traditional CBAM. FCBAM not only can adaptively select and fuse the most representative features, but also can better capture the image important features at different positions in the image and enhance spatial detail perception. Finally, semantic fusion network (SFN) is proposed on the basis of residual network, which introduces semantic information of high-layer feature into low-layer feature. It can adaptively guide the fusion of high-layer feature and low-layer feature to reduce the loss of feature information. After experimental verification, the Enhanced-YOLOv8 proposed improves the accuracy of the detection results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hz发布了新的文献求助10
1秒前
杰瑞院士发布了新的文献求助10
1秒前
nuo发布了新的文献求助10
1秒前
1秒前
2秒前
麦益颖完成签到,获得积分10
2秒前
3秒前
lingxu关注了科研通微信公众号
3秒前
阿腾发布了新的文献求助10
4秒前
tyughi完成签到,获得积分10
5秒前
5秒前
小二郎应助Zhangchi采纳,获得10
5秒前
6秒前
支以冬完成签到,获得积分20
6秒前
积极的小馒头应助ohevenne采纳,获得20
6秒前
YYY完成签到,获得积分10
6秒前
8秒前
8秒前
8秒前
Anqi发布了新的文献求助10
9秒前
9秒前
9秒前
Amy发布了新的文献求助10
10秒前
果果完成签到 ,获得积分10
11秒前
杰瑞院士发布了新的文献求助10
11秒前
HHM完成签到,获得积分10
12秒前
xxx完成签到,获得积分10
12秒前
hana关注了科研通微信公众号
12秒前
心意发布了新的文献求助10
12秒前
12秒前
13秒前
mycishere发布了新的文献求助10
13秒前
14秒前
14秒前
陶醉土豆发布了新的文献求助10
14秒前
xxx发布了新的文献求助10
15秒前
15秒前
16秒前
wang1012完成签到,获得积分10
17秒前
顺利如冰完成签到,获得积分10
17秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140965
求助须知:如何正确求助?哪些是违规求助? 2791902
关于积分的说明 7800851
捐赠科研通 2448159
什么是DOI,文献DOI怎么找? 1302441
科研通“疑难数据库(出版商)”最低求助积分说明 626568
版权声明 601226