已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Microstate-based brain network dynamics distinguishing temporal lobe epilepsy patients: A machine learning approach

地方政府 颞叶 癫痫 神经科学 心理学 医学 人工智能 脑电图 计算机科学
作者
Zihan Wei,Xinpei Wang,Chao Liu,Yan Feng,Yajing Gan,Yuqing Shi,Xiaoli Wang,Yonghong Liu,Yanchun Deng
出处
期刊:NeuroImage [Elsevier]
卷期号:296: 120683-120683 被引量:2
标识
DOI:10.1016/j.neuroimage.2024.120683
摘要

Temporal lobe epilepsy (TLE) stands as the predominant adult focal epilepsy syndrome, characterized by dysfunctional intrinsic brain dynamics. However, the precise mechanisms underlying seizures in these patients remain elusive. Our study encompassed 116 TLE patients compared with 51 healthy controls. Employing microstate analysis, we assessed brain dynamic disparities between TLE patients and healthy controls, as well as between drug-resistant epilepsy (DRE) and drug-sensitive epilepsy (DSE) patients. We constructed dynamic functional connectivity networks based on microstates and quantified their spatial and temporal variability. Utilizing these brain network features, we developed machine learning models to discriminate between TLE patients and healthy controls, and between DRE and DSE patients. Temporal dynamics in TLE patients exhibited significant acceleration compared to healthy controls, along with heightened synchronization and instability in brain networks. Moreover, DRE patients displayed notably lower spatial variability in certain parts of microstate B, E and F dynamic functional connectivity networks, while temporal variability in certain parts of microstate E and G dynamic functional connectivity networks was markedly higher in DRE patients compared to DSE patients. The machine learning model based on these spatiotemporal metrics effectively differentiated TLE patients from healthy controls and discerned DRE from DSE patients. The accelerated microstate dynamics and disrupted microstate sequences observed in TLE patients mirror highly unstable intrinsic brain dynamics, potentially underlying abnormal discharges. Additionally, the presence of highly synchronized and unstable activities in brain networks of DRE patients signifies the establishment of stable epileptogenic networks, contributing to the poor responsiveness to antiseizure medications. The model based on spatiotemporal metrics demonstrated robust predictive performance, accurately distinguishing both TLE patients from healthy controls and DRE patients from DSE patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杀鸡发布了新的文献求助10
2秒前
机灵芷文发布了新的文献求助10
2秒前
3秒前
3秒前
5秒前
井盖发发布了新的文献求助10
5秒前
一只大鸭梨完成签到,获得积分10
6秒前
思源应助gucci采纳,获得10
7秒前
7秒前
李健的粉丝团团长应助wei采纳,获得10
7秒前
LY发布了新的文献求助10
7秒前
11发布了新的文献求助10
9秒前
大个应助接受所有饼干采纳,获得10
10秒前
11秒前
称心剑鬼发布了新的文献求助10
12秒前
12秒前
Lukomere发布了新的文献求助10
13秒前
楼醉山完成签到,获得积分10
15秒前
可爱的函函应助井盖发采纳,获得10
17秒前
caixukun发布了新的文献求助10
18秒前
猫小乐C完成签到,获得积分10
18秒前
guojingjing发布了新的文献求助10
19秒前
定位心海的锚完成签到,获得积分10
20秒前
称心剑鬼完成签到,获得积分10
21秒前
zhou269完成签到,获得积分10
21秒前
jinan完成签到,获得积分10
22秒前
23秒前
26秒前
jinan发布了新的文献求助10
27秒前
Criminology34举报饼饼求助涉嫌违规
27秒前
27秒前
28秒前
28秒前
天天快乐应助keke采纳,获得10
32秒前
科研通AI6应助Lyon采纳,获得10
33秒前
34秒前
汉堡包应助如意修洁采纳,获得10
35秒前
gucci发布了新的文献求助10
35秒前
37秒前
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5355874
求助须知:如何正确求助?哪些是违规求助? 4487717
关于积分的说明 13970886
捐赠科研通 4388491
什么是DOI,文献DOI怎么找? 2411104
邀请新用户注册赠送积分活动 1403650
关于科研通互助平台的介绍 1377279