Microstate-based brain network dynamics distinguishing temporal lobe epilepsy patients: A machine learning approach

地方政府 颞叶 癫痫 神经科学 心理学 医学 人工智能 脑电图 计算机科学
作者
Zihan Wei,Xinpei Wang,Chao Liu,Yan Feng,Yajing Gan,Yuqing Shi,Xiaoli Wang,Yonghong Liu,Yanchun Deng
出处
期刊:NeuroImage [Elsevier BV]
卷期号:296: 120683-120683 被引量:2
标识
DOI:10.1016/j.neuroimage.2024.120683
摘要

Temporal lobe epilepsy (TLE) stands as the predominant adult focal epilepsy syndrome, characterized by dysfunctional intrinsic brain dynamics. However, the precise mechanisms underlying seizures in these patients remain elusive. Our study encompassed 116 TLE patients compared with 51 healthy controls. Employing microstate analysis, we assessed brain dynamic disparities between TLE patients and healthy controls, as well as between drug-resistant epilepsy (DRE) and drug-sensitive epilepsy (DSE) patients. We constructed dynamic functional connectivity networks based on microstates and quantified their spatial and temporal variability. Utilizing these brain network features, we developed machine learning models to discriminate between TLE patients and healthy controls, and between DRE and DSE patients. Temporal dynamics in TLE patients exhibited significant acceleration compared to healthy controls, along with heightened synchronization and instability in brain networks. Moreover, DRE patients displayed notably lower spatial variability in certain parts of microstate B, E and F dynamic functional connectivity networks, while temporal variability in certain parts of microstate E and G dynamic functional connectivity networks was markedly higher in DRE patients compared to DSE patients. The machine learning model based on these spatiotemporal metrics effectively differentiated TLE patients from healthy controls and discerned DRE from DSE patients. The accelerated microstate dynamics and disrupted microstate sequences observed in TLE patients mirror highly unstable intrinsic brain dynamics, potentially underlying abnormal discharges. Additionally, the presence of highly synchronized and unstable activities in brain networks of DRE patients signifies the establishment of stable epileptogenic networks, contributing to the poor responsiveness to antiseizure medications. The model based on spatiotemporal metrics demonstrated robust predictive performance, accurately distinguishing both TLE patients from healthy controls and DRE patients from DSE patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
畅快的不言完成签到,获得积分10
2秒前
深情安青应助Landau采纳,获得10
3秒前
blawxx完成签到,获得积分10
3秒前
zhu2023发布了新的文献求助30
3秒前
4秒前
收手吧大哥应助Talk采纳,获得10
5秒前
LaLa给LaLa的求助进行了留言
5秒前
小怀完成签到 ,获得积分10
5秒前
斯文静竹发布了新的文献求助10
6秒前
张小咩咩完成签到 ,获得积分10
7秒前
田様应助17878362采纳,获得10
8秒前
内向的惜芹完成签到,获得积分10
8秒前
共享精神应助cc采纳,获得10
8秒前
暴躁的阁发布了新的文献求助10
9秒前
虾仁完成签到,获得积分10
10秒前
10秒前
Kiana完成签到,获得积分10
10秒前
斯文静竹完成签到,获得积分10
12秒前
花鸟风月evereo完成签到,获得积分10
12秒前
13秒前
14秒前
张华发布了新的文献求助10
15秒前
李爱国应助woa22采纳,获得10
16秒前
16秒前
17秒前
壮观士晋发布了新的文献求助10
17秒前
18秒前
xixi不嘻嘻发布了新的文献求助10
18秒前
18秒前
张萌完成签到 ,获得积分10
20秒前
深情安青应助逸之狐采纳,获得10
21秒前
洛森完成签到,获得积分10
21秒前
Akim应助xwzz采纳,获得30
22秒前
慧慧完成签到,获得积分10
22秒前
追寻盼烟发布了新的文献求助10
23秒前
谦让月饼完成签到 ,获得积分10
23秒前
ludong_0应助可靠的南露采纳,获得10
23秒前
852应助大力水手采纳,获得10
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958282
求助须知:如何正确求助?哪些是违规求助? 3504444
关于积分的说明 11118494
捐赠科研通 3235770
什么是DOI,文献DOI怎么找? 1788433
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802582