亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Microstate-based brain network dynamics distinguishing temporal lobe epilepsy patients: A machine learning approach

地方政府 颞叶 癫痫 神经科学 心理学 医学 人工智能 脑电图 计算机科学
作者
Zihan Wei,Xinpei Wang,Chao Liu,Yan Feng,Yajing Gan,Yuqing Shi,Xiaoli Wang,Yonghong Liu,Yanchun Deng
出处
期刊:NeuroImage [Elsevier]
卷期号:296: 120683-120683 被引量:2
标识
DOI:10.1016/j.neuroimage.2024.120683
摘要

Temporal lobe epilepsy (TLE) stands as the predominant adult focal epilepsy syndrome, characterized by dysfunctional intrinsic brain dynamics. However, the precise mechanisms underlying seizures in these patients remain elusive. Our study encompassed 116 TLE patients compared with 51 healthy controls. Employing microstate analysis, we assessed brain dynamic disparities between TLE patients and healthy controls, as well as between drug-resistant epilepsy (DRE) and drug-sensitive epilepsy (DSE) patients. We constructed dynamic functional connectivity networks based on microstates and quantified their spatial and temporal variability. Utilizing these brain network features, we developed machine learning models to discriminate between TLE patients and healthy controls, and between DRE and DSE patients. Temporal dynamics in TLE patients exhibited significant acceleration compared to healthy controls, along with heightened synchronization and instability in brain networks. Moreover, DRE patients displayed notably lower spatial variability in certain parts of microstate B, E and F dynamic functional connectivity networks, while temporal variability in certain parts of microstate E and G dynamic functional connectivity networks was markedly higher in DRE patients compared to DSE patients. The machine learning model based on these spatiotemporal metrics effectively differentiated TLE patients from healthy controls and discerned DRE from DSE patients. The accelerated microstate dynamics and disrupted microstate sequences observed in TLE patients mirror highly unstable intrinsic brain dynamics, potentially underlying abnormal discharges. Additionally, the presence of highly synchronized and unstable activities in brain networks of DRE patients signifies the establishment of stable epileptogenic networks, contributing to the poor responsiveness to antiseizure medications. The model based on spatiotemporal metrics demonstrated robust predictive performance, accurately distinguishing both TLE patients from healthy controls and DRE patients from DSE patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nooooorae应助Harbeth采纳,获得10
11秒前
石中酒完成签到 ,获得积分10
26秒前
58秒前
58秒前
勇猛的小qin完成签到 ,获得积分10
59秒前
Velvet完成签到,获得积分10
1分钟前
大模型应助Takahara2000采纳,获得10
1分钟前
万能图书馆应助Planck采纳,获得10
1分钟前
JamesPei应助Takahara2000采纳,获得10
1分钟前
Akim应助昏睡的樱采纳,获得10
1分钟前
duan完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
Planck发布了新的文献求助10
2分钟前
浮游应助Takahara2000采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
Takahara2000完成签到,获得积分10
2分钟前
昏睡的樱发布了新的文献求助10
2分钟前
大模型应助lin采纳,获得10
3分钟前
Jasper应助Planck采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
昏睡的樱完成签到,获得积分10
3分钟前
3分钟前
冷静书白发布了新的文献求助10
3分钟前
小蘑菇应助冷静书白采纳,获得10
4分钟前
4分钟前
4分钟前
lin发布了新的文献求助10
4分钟前
Planck发布了新的文献求助10
4分钟前
lin完成签到,获得积分10
5分钟前
核桃应助cc采纳,获得10
5分钟前
英俊的铭应助可乐采纳,获得10
5分钟前
cc完成签到,获得积分10
5分钟前
英俊的铭应助研友_ZlPDdZ采纳,获得10
5分钟前
木齐Jay完成签到,获得积分10
5分钟前
隋黎完成签到 ,获得积分10
6分钟前
6分钟前
可乐发布了新的文献求助10
6分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Video: Lagrangian coherent structures in the flow field of a fluidic oscillator 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5449894
求助须知:如何正确求助?哪些是违规求助? 4557860
关于积分的说明 14265036
捐赠科研通 4481056
什么是DOI,文献DOI怎么找? 2454673
邀请新用户注册赠送积分活动 1445471
关于科研通互助平台的介绍 1421295