Microstate-based brain network dynamics distinguishing temporal lobe epilepsy patients: A machine learning approach

地方政府 颞叶 癫痫 神经科学 心理学 医学 人工智能 脑电图 计算机科学
作者
Zihan Wei,Xinpei Wang,Chao Liu,Yan Feng,Yajing Gan,Yuqing Shi,Xiaoli Wang,Yonghong Liu,Yanchun Deng
出处
期刊:NeuroImage [Elsevier]
卷期号:296: 120683-120683 被引量:2
标识
DOI:10.1016/j.neuroimage.2024.120683
摘要

Temporal lobe epilepsy (TLE) stands as the predominant adult focal epilepsy syndrome, characterized by dysfunctional intrinsic brain dynamics. However, the precise mechanisms underlying seizures in these patients remain elusive. Our study encompassed 116 TLE patients compared with 51 healthy controls. Employing microstate analysis, we assessed brain dynamic disparities between TLE patients and healthy controls, as well as between drug-resistant epilepsy (DRE) and drug-sensitive epilepsy (DSE) patients. We constructed dynamic functional connectivity networks based on microstates and quantified their spatial and temporal variability. Utilizing these brain network features, we developed machine learning models to discriminate between TLE patients and healthy controls, and between DRE and DSE patients. Temporal dynamics in TLE patients exhibited significant acceleration compared to healthy controls, along with heightened synchronization and instability in brain networks. Moreover, DRE patients displayed notably lower spatial variability in certain parts of microstate B, E and F dynamic functional connectivity networks, while temporal variability in certain parts of microstate E and G dynamic functional connectivity networks was markedly higher in DRE patients compared to DSE patients. The machine learning model based on these spatiotemporal metrics effectively differentiated TLE patients from healthy controls and discerned DRE from DSE patients. The accelerated microstate dynamics and disrupted microstate sequences observed in TLE patients mirror highly unstable intrinsic brain dynamics, potentially underlying abnormal discharges. Additionally, the presence of highly synchronized and unstable activities in brain networks of DRE patients signifies the establishment of stable epileptogenic networks, contributing to the poor responsiveness to antiseizure medications. The model based on spatiotemporal metrics demonstrated robust predictive performance, accurately distinguishing both TLE patients from healthy controls and DRE patients from DSE patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
YL完成签到 ,获得积分10
刚刚
刚刚
1秒前
传奇3应助浮希颜采纳,获得10
1秒前
古夕完成签到,获得积分10
3秒前
Dr_zsc发布了新的文献求助10
3秒前
领导范儿应助哭泣毛巾采纳,获得10
4秒前
5秒前
5秒前
长乐完成签到,获得积分10
5秒前
小池同学发布了新的文献求助10
6秒前
6秒前
李健的粉丝团团长应助tf采纳,获得10
6秒前
领导范儿应助bbbuc采纳,获得10
7秒前
7秒前
成成成完成签到,获得积分10
8秒前
H恺完成签到,获得积分10
8秒前
上官若男应助JYY采纳,获得10
9秒前
ddw完成签到,获得积分10
10秒前
lft361应助蛋蛋采纳,获得10
10秒前
Dr_zsc完成签到,获得积分10
11秒前
11秒前
bela完成签到,获得积分10
11秒前
共享精神应助xiaoxiao采纳,获得10
12秒前
艾伊发布了新的文献求助10
12秒前
12秒前
13秒前
涨涨涨发布了新的文献求助30
13秒前
今后应助科研通管家采纳,获得10
13秒前
13秒前
Criminology34应助科研通管家采纳,获得30
13秒前
量子星尘发布了新的文献求助10
13秒前
赘婿应助科研通管家采纳,获得30
13秒前
14秒前
eleven完成签到,获得积分10
14秒前
14秒前
15秒前
zzzjh发布了新的文献求助10
15秒前
7890733发布了新的文献求助10
16秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 941
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5443296
求助须知:如何正确求助?哪些是违规求助? 4553176
关于积分的说明 14241249
捐赠科研通 4474739
什么是DOI,文献DOI怎么找? 2452158
邀请新用户注册赠送积分活动 1443119
关于科研通互助平台的介绍 1418742