Microstate-based brain network dynamics distinguishing temporal lobe epilepsy patients: A machine learning approach

地方政府 颞叶 癫痫 神经科学 心理学 医学 人工智能 脑电图 计算机科学
作者
Zihan Wei,Xinpei Wang,Chao Liu,Yan Feng,Yajing Gan,Yuqing Shi,Xiaoli Wang,Yonghong Liu,Yanchun Deng
出处
期刊:NeuroImage [Elsevier]
卷期号:296: 120683-120683 被引量:2
标识
DOI:10.1016/j.neuroimage.2024.120683
摘要

Temporal lobe epilepsy (TLE) stands as the predominant adult focal epilepsy syndrome, characterized by dysfunctional intrinsic brain dynamics. However, the precise mechanisms underlying seizures in these patients remain elusive. Our study encompassed 116 TLE patients compared with 51 healthy controls. Employing microstate analysis, we assessed brain dynamic disparities between TLE patients and healthy controls, as well as between drug-resistant epilepsy (DRE) and drug-sensitive epilepsy (DSE) patients. We constructed dynamic functional connectivity networks based on microstates and quantified their spatial and temporal variability. Utilizing these brain network features, we developed machine learning models to discriminate between TLE patients and healthy controls, and between DRE and DSE patients. Temporal dynamics in TLE patients exhibited significant acceleration compared to healthy controls, along with heightened synchronization and instability in brain networks. Moreover, DRE patients displayed notably lower spatial variability in certain parts of microstate B, E and F dynamic functional connectivity networks, while temporal variability in certain parts of microstate E and G dynamic functional connectivity networks was markedly higher in DRE patients compared to DSE patients. The machine learning model based on these spatiotemporal metrics effectively differentiated TLE patients from healthy controls and discerned DRE from DSE patients. The accelerated microstate dynamics and disrupted microstate sequences observed in TLE patients mirror highly unstable intrinsic brain dynamics, potentially underlying abnormal discharges. Additionally, the presence of highly synchronized and unstable activities in brain networks of DRE patients signifies the establishment of stable epileptogenic networks, contributing to the poor responsiveness to antiseizure medications. The model based on spatiotemporal metrics demonstrated robust predictive performance, accurately distinguishing both TLE patients from healthy controls and DRE patients from DSE patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猫小咪发布了新的文献求助10
刚刚
Moriarty完成签到,获得积分10
刚刚
坚强的芸遥完成签到,获得积分10
刚刚
王晓茜完成签到,获得积分20
1秒前
未道发布了新的文献求助10
1秒前
1秒前
完美麦片完成签到,获得积分10
2秒前
2秒前
衢夭完成签到,获得积分10
3秒前
咿呀咿呀哟完成签到,获得积分0
3秒前
岳欣应助知识进脑子吧采纳,获得10
3秒前
酱酱江将蒋完成签到 ,获得积分10
3秒前
piaopiao1122完成签到,获得积分10
4秒前
求助人员发布了新的文献求助30
4秒前
4秒前
sunwending发布了新的文献求助10
4秒前
luoluo完成签到 ,获得积分10
5秒前
yunfulu29完成签到,获得积分10
5秒前
夏儿完成签到,获得积分10
5秒前
无知的小能手完成签到,获得积分10
5秒前
秋子david发布了新的文献求助10
6秒前
小二郎应助姬会会采纳,获得10
7秒前
活力立诚完成签到,获得积分10
7秒前
duduguai完成签到,获得积分10
7秒前
夏儿发布了新的文献求助10
7秒前
8秒前
Rqbnicsp完成签到,获得积分10
8秒前
8秒前
smottom应助hohokuz采纳,获得10
8秒前
brd完成签到,获得积分10
9秒前
9秒前
Plucky完成签到,获得积分10
9秒前
10秒前
谁来救救我完成签到 ,获得积分10
10秒前
蓝天发布了新的文献求助10
10秒前
10秒前
NexusExplorer应助坚强的芸遥采纳,获得10
10秒前
hhhh完成签到,获得积分10
10秒前
迷失浪人完成签到,获得积分10
11秒前
斯文败类应助qqqq采纳,获得10
11秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5698917
求助须知:如何正确求助?哪些是违规求助? 5127463
关于积分的说明 15223160
捐赠科研通 4853889
什么是DOI,文献DOI怎么找? 2604380
邀请新用户注册赠送积分活动 1555868
关于科研通互助平台的介绍 1514197