Microstate-based brain network dynamics distinguishing temporal lobe epilepsy patients: A machine learning approach

地方政府 颞叶 癫痫 神经科学 心理学 医学 人工智能 脑电图 计算机科学
作者
Zihan Wei,Xinpei Wang,Chao Liu,Yan Feng,Yajing Gan,Yuqing Shi,Xiaoli Wang,Yonghong Liu,Yanchun Deng
出处
期刊:NeuroImage [Elsevier]
卷期号:296: 120683-120683 被引量:2
标识
DOI:10.1016/j.neuroimage.2024.120683
摘要

Temporal lobe epilepsy (TLE) stands as the predominant adult focal epilepsy syndrome, characterized by dysfunctional intrinsic brain dynamics. However, the precise mechanisms underlying seizures in these patients remain elusive. Our study encompassed 116 TLE patients compared with 51 healthy controls. Employing microstate analysis, we assessed brain dynamic disparities between TLE patients and healthy controls, as well as between drug-resistant epilepsy (DRE) and drug-sensitive epilepsy (DSE) patients. We constructed dynamic functional connectivity networks based on microstates and quantified their spatial and temporal variability. Utilizing these brain network features, we developed machine learning models to discriminate between TLE patients and healthy controls, and between DRE and DSE patients. Temporal dynamics in TLE patients exhibited significant acceleration compared to healthy controls, along with heightened synchronization and instability in brain networks. Moreover, DRE patients displayed notably lower spatial variability in certain parts of microstate B, E and F dynamic functional connectivity networks, while temporal variability in certain parts of microstate E and G dynamic functional connectivity networks was markedly higher in DRE patients compared to DSE patients. The machine learning model based on these spatiotemporal metrics effectively differentiated TLE patients from healthy controls and discerned DRE from DSE patients. The accelerated microstate dynamics and disrupted microstate sequences observed in TLE patients mirror highly unstable intrinsic brain dynamics, potentially underlying abnormal discharges. Additionally, the presence of highly synchronized and unstable activities in brain networks of DRE patients signifies the establishment of stable epileptogenic networks, contributing to the poor responsiveness to antiseizure medications. The model based on spatiotemporal metrics demonstrated robust predictive performance, accurately distinguishing both TLE patients from healthy controls and DRE patients from DSE patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
的y应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
刚刚
Akim应助科研通管家采纳,获得30
刚刚
大个应助科研通管家采纳,获得10
刚刚
微光应助科研通管家采纳,获得10
刚刚
李不开你发布了新的文献求助10
刚刚
刚刚
Ranqi发布了新的文献求助10
1秒前
Pattis完成签到 ,获得积分10
2秒前
大糖糕僧发布了新的文献求助10
2秒前
2秒前
李健的小迷弟应助收醉人采纳,获得10
2秒前
泥泞o发布了新的文献求助10
3秒前
css完成签到,获得积分20
4秒前
4秒前
4秒前
5秒前
赘婿应助生动惊蛰采纳,获得10
5秒前
mfpp发布了新的文献求助10
5秒前
5秒前
Lusteri完成签到,获得积分10
5秒前
闫鹤文完成签到,获得积分10
6秒前
梦璃发布了新的文献求助10
6秒前
dachang发布了新的文献求助100
6秒前
乐乐应助飞飞888采纳,获得10
6秒前
6秒前
浮游应助刻苦初翠采纳,获得10
7秒前
Jasper应助有魅力的无施采纳,获得10
7秒前
jfy完成签到,获得积分10
7秒前
8秒前
9秒前
9秒前
糖糖完成签到,获得积分10
9秒前
33发布了新的文献求助10
9秒前
orixero应助biubiu采纳,获得10
10秒前
所所应助iimayday采纳,获得10
10秒前
郭盟发布了新的文献求助10
10秒前
啊伟完成签到,获得积分20
11秒前
香蕉觅云应助dengqi采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5552713
求助须知:如何正确求助?哪些是违规求助? 4637412
关于积分的说明 14649184
捐赠科研通 4579232
什么是DOI,文献DOI怎么找? 2511511
邀请新用户注册赠送积分活动 1486533
关于科研通互助平台的介绍 1457559