Microstate-based brain network dynamics distinguishing temporal lobe epilepsy patients: A machine learning approach

地方政府 颞叶 癫痫 神经科学 心理学 医学 人工智能 脑电图 计算机科学
作者
Zihan Wei,Xinpei Wang,Chao Liu,Yan Feng,Yajing Gan,Yuqing Shi,Xiaoli Wang,Yonghong Liu,Yanchun Deng
出处
期刊:NeuroImage [Elsevier]
卷期号:296: 120683-120683
标识
DOI:10.1016/j.neuroimage.2024.120683
摘要

Temporal lobe epilepsy (TLE) stands as the predominant adult focal epilepsy syndrome, characterized by dysfunctional intrinsic brain dynamics. However, the precise mechanisms underlying seizures in these patients remain elusive. Our study encompassed 116 TLE patients compared with 51 healthy controls. Employing microstate analysis, we assessed brain dynamic disparities between TLE patients and healthy controls, as well as between drug-resistant epilepsy (DRE) and drug-sensitive epilepsy (DSE) patients. We constructed dynamic functional connectivity networks based on microstates and quantified their spatial and temporal variability. Utilizing these brain network features, we developed machine learning models to discriminate between TLE patients and healthy controls, and between DRE and DSE patients. Temporal dynamics in TLE patients exhibited significant acceleration compared to healthy controls, along with heightened synchronization and instability in brain networks. Moreover, DRE patients displayed notably lower spatial variability in certain parts of microstate B, E and F dynamic functional connectivity networks, while temporal variability in certain parts of microstate E and G dynamic functional connectivity networks was markedly higher in DRE patients compared to DSE patients. The machine learning model based on these spatiotemporal metrics effectively differentiated TLE patients from healthy controls and discerned DRE from DSE patients. The accelerated microstate dynamics and disrupted microstate sequences observed in TLE patients mirror highly unstable intrinsic brain dynamics, potentially underlying abnormal discharges. Additionally, the presence of highly synchronized and unstable activities in brain networks of DRE patients signifies the establishment of stable epileptogenic networks, contributing to the poor responsiveness to antiseizure medications. The model based on spatiotemporal metrics demonstrated robust predictive performance, accurately distinguishing both TLE patients from healthy controls and DRE patients from DSE patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lalala发布了新的文献求助10
1秒前
三里墩头应助oldlee采纳,获得20
1秒前
1秒前
iNk应助西安小小朱采纳,获得10
1秒前
CodeCraft应助西安小小朱采纳,获得10
1秒前
无花果应助爱学习的小迟采纳,获得10
2秒前
哭泣的映寒完成签到 ,获得积分10
2秒前
xls完成签到,获得积分10
2秒前
2秒前
故意的傲玉应助圈圈采纳,获得10
2秒前
3秒前
522完成签到,获得积分10
3秒前
3秒前
kbj发布了新的文献求助10
3秒前
4秒前
老西瓜发布了新的文献求助10
4秒前
人各有痣完成签到,获得积分10
4秒前
后知后觉发布了新的文献求助10
4秒前
xiaoxiao发布了新的文献求助30
4秒前
4秒前
5秒前
5秒前
英姑应助哈哈呀采纳,获得10
6秒前
6秒前
hurry完成签到,获得积分10
6秒前
Hungrylunch应助陈玉婷采纳,获得20
6秒前
领导范儿应助hu970采纳,获得10
7秒前
new_vision发布了新的文献求助10
7秒前
拼搏翠桃完成签到,获得积分10
8秒前
糖糖科研顺利呀完成签到 ,获得积分10
8秒前
8秒前
阿秋完成签到,获得积分10
8秒前
Pangsj发布了新的文献求助10
9秒前
hhh发布了新的文献求助10
9秒前
好运藏在善良里完成签到,获得积分10
9秒前
情怀应助奋斗映寒采纳,获得10
9秒前
10秒前
CodeCraft应助牧海冬采纳,获得10
10秒前
zxcv23完成签到,获得积分10
10秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672