Soft Adversarial Offline Reinforcement Learning via Reducing the Attack Strength for Generalization

对抗制 强化学习 计算机科学 一般化 人工智能 钢筋 机器学习 工程类 数学 结构工程 数学分析
作者
Weidong Qiao,Rui Yang
标识
DOI:10.1145/3651671.3651762
摘要

Improving the generalization ability in offline reinforcement learning (RL) has received much attention in recent years. Existing adversarial RL approaches use adversarial training for the policy improvement, thus enhancing the generalization ability of RL agents. However, adversarial training severely hinders the performance improvement of agents in offline RL settings. This is because adversarial training is a pessimistic learning paradigm, where the adversarial attack patterns aim to improve the agents' generalization ability in worst-case scenarios. Such a learning paradigm struggles to improve the policy performance in the unstable training process of offline RL, thereby making it challenging to enhance generalization ability. To tackle this problem, we propose a novel offline adversarial RL approach, namely Soft Adversarial Offline Reinforcement Learning (SAORL), which learns soft adversarial examples by reducing the attack strength of adversarial examples in offline RL. Specifically, SAORL proposes the Wasserstein-based constraint on traditional adversarial examples, thus formulating a worse-case optimization problem to learn the soft adversarial examples. We conduct extensive experiments on D4RL to evaluate our approach, which demonstrates SAORL can improve agents' performance and zero-shot generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助hh哈哈采纳,获得10
刚刚
1秒前
烂漫碧灵发布了新的文献求助10
2秒前
壮观缘分发布了新的文献求助10
2秒前
隐形曼青应助山随平野尽采纳,获得10
3秒前
傻子与白痴完成签到,获得积分10
3秒前
3秒前
玖玖完成签到,获得积分10
3秒前
4秒前
LLL发布了新的文献求助10
4秒前
5秒前
科目三应助科研通管家采纳,获得10
6秒前
11应助科研通管家采纳,获得10
6秒前
852应助科研通管家采纳,获得10
6秒前
6秒前
聪慧小霜应助科研通管家采纳,获得10
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
7秒前
Orange应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
7秒前
聪慧小霜应助科研通管家采纳,获得10
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
7秒前
8秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
研友_VZG7GZ应助LuoYixiang采纳,获得10
10秒前
天天快乐应助壮观缘分采纳,获得10
11秒前
jiajia发布了新的文献求助10
12秒前
烂漫碧灵完成签到,获得积分10
13秒前
nicelily发布了新的文献求助30
13秒前
14秒前
一期一会完成签到,获得积分10
15秒前
15秒前
Wxxxxx完成签到 ,获得积分10
15秒前
16秒前
18秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980435
求助须知:如何正确求助?哪些是违规求助? 3524350
关于积分的说明 11221150
捐赠科研通 3261779
什么是DOI,文献DOI怎么找? 1800909
邀请新用户注册赠送积分活动 879476
科研通“疑难数据库(出版商)”最低求助积分说明 807283