Evaluation of polygenic scoring methods in five biobanks shows larger variation between biobanks than methods and finds benefits of ensemble learning

生命银行 超参数 精密医学 协变量 计算机科学 生物 计算生物学 统计 数据挖掘 生物信息学 遗传学 机器学习 数学
作者
Remo Monti,Lisa Eick,Georgi Hudjashov,Kristi Läll,Stavroula Kanoni,Brooke N. Wolford,Benjamin Wingfield,Oliver Pain,Sophie Wharrie,Bradley Jermy,Aoife McMahon,Tuomo Hartonen,Henrike Heyne,Nina Mars,Samuel A. Lambert,Kristian Hveem,Michael Inouye,David A. van Heel,Reedik Mägi,Pekka Marttinen,Meg Ehm,Andrea Ganna,Christoph Lippert
出处
期刊:American Journal of Human Genetics [Elsevier BV]
卷期号:111 (7): 1431-1447
标识
DOI:10.1016/j.ajhg.2024.06.003
摘要

Methods of estimating polygenic scores (PGSs) from genome-wide association studies are increasingly utilized. However, independent method evaluation is lacking, and method comparisons are often limited. Here, we evaluate polygenic scores derived via seven methods in five biobank studies (totaling about 1.2 million participants) across 16 diseases and quantitative traits, building on a reference-standardized framework. We conducted meta-analyses to quantify the effects of method choice, hyperparameter tuning, method ensembling, and the target biobank on PGS performance. We found that no single method consistently outperformed all others. PGS effect sizes were more variable between biobanks than between methods within biobanks when methods were well tuned. Differences between methods were largest for the two investigated autoimmune diseases, seropositive rheumatoid arthritis and type 1 diabetes. For most methods, cross-validation was more reliable for tuning hyperparameters than automatic tuning (without the use of target data). For a given target phenotype, elastic net models combining PGS across methods (ensemble PGS) tuned in the UK Biobank provided consistent, high, and cross-biobank transferable performance, increasing PGS effect sizes (β coefficients) by a median of 5.0% relative to LDpred2 and MegaPRS (the two best-performing single methods when tuned with cross-validation). Our interactively browsable online-results and open-source workflow prspipe provide a rich resource and reference for the analysis of polygenic scoring methods across biobanks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
第一张完成签到,获得积分10
刚刚
轻松砖头发布了新的文献求助10
1秒前
往返发布了新的文献求助10
2秒前
万能图书馆应助ss采纳,获得10
3秒前
Leoling发布了新的文献求助10
4秒前
坦率的匪应助liuyan采纳,获得10
5秒前
开心的半仙完成签到,获得积分10
5秒前
5秒前
5秒前
ShiyuZuo完成签到,获得积分10
7秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
在水一方应助hping采纳,获得10
11秒前
14秒前
15秒前
orixero应助超级的西装采纳,获得10
17秒前
江洋大盗发布了新的文献求助10
18秒前
123发布了新的文献求助10
18秒前
21秒前
SciGPT应助科研通管家采纳,获得10
21秒前
大个应助科研通管家采纳,获得10
21秒前
天天快乐应助科研通管家采纳,获得10
21秒前
water应助科研通管家采纳,获得10
21秒前
CodeCraft应助科研通管家采纳,获得10
21秒前
Rondab应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
英俊的铭应助科研通管家采纳,获得10
21秒前
22秒前
22秒前
27秒前
科研涛发布了新的文献求助10
28秒前
打打应助江洋大盗采纳,获得10
29秒前
了一发布了新的文献求助10
31秒前
Jim发布了新的文献求助10
32秒前
善学以致用应助123采纳,获得10
33秒前
科研涛完成签到,获得积分10
34秒前
czh应助落寞鞋子采纳,获得10
35秒前
引子完成签到,获得积分10
35秒前
陈敏发布了新的文献求助20
38秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979648
求助须知:如何正确求助?哪些是违规求助? 3523618
关于积分的说明 11218147
捐赠科研通 3261119
什么是DOI,文献DOI怎么找? 1800416
邀请新用户注册赠送积分活动 879099
科研通“疑难数据库(出版商)”最低求助积分说明 807167