亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An enhanced sparrow search swarm optimizer via multi-strategies for high-dimensional optimization problems

计算机科学 群体行为 数学优化 元启发式 麻雀 粒子群优化 算法 人工智能 数学 生态学 生物
作者
Shuang Liang,Minghao Yin,Geng Sun,Jiahui Li,Hongjuan Li,Qi Lang
出处
期刊:Swarm and evolutionary computation [Elsevier BV]
卷期号:88: 101603-101603 被引量:3
标识
DOI:10.1016/j.swevo.2024.101603
摘要

With the development of science and technology, high-dimensional global optimization problems have become increasingly prevalent for scientific research and engineering, such as gene recognition, vehicle routing, job scheduling, and network topology. These problems are typically characterized by enormous and complex search spaces and numerous local minima, making it challenging to find the global optimal solution with limited computing resources. This paper introduces an enhanced sparrow search swarm optimizer (ESSSO) based on a bio-mimetic method. The ESSSO employs an adaptive sinusoidal walk strategy based on the von Mises distribution, a learning strategy utilizing roulette wheel selection, a two-stage evolution strategy, and a selection mutation strategy to address these issues. The proposed sinusoidal walk strategy, grounded in the von Mises distribution, supports a balanced evolutionary search. This mechanism disperses the individuals in a swarm in various directions based on a circular normal distribution. It then leads the search and adaptively adjusts their step sizes according to the size of the search domain during each generation of evolution. The learning strategy, based on roulette wheel selection, enhances the diversity of the population and improves the global search capability of the algorithm during the initial iterations. The two-stage evolution strategy involves a sine-learning mechanism based on the von Mises distribution and an adaptive mutation mechanism. The former is designed to boost the convergence speed of ESSSO, while the latter prevents ESSSO from getting trapped in a local optimum. Additionally, the selection mutation strategy further enhances convergence speed while maintaining population diversity. These strategies promote exploration in the early stages of evolution and exploitation in the later stages, enabling a well-balanced search for optimal solutions. We conducted comprehensive experiments two standard benchmark sets (i.e., CEC2010 and CEC2013), antenna array optimization, feature selection, and four engineering design problems. The results indicate that ESSSO outperforms ten comparison algorithms, especially in scenarios with smaller population sizes. This confirms its effectiveness in high-dimensional global optimization tasks and demonstrates that it can achieve better results with less computational resource consumption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nenoaowu发布了新的文献求助10
2秒前
共享精神应助nenoaowu采纳,获得10
6秒前
传奇3应助科研通管家采纳,获得10
47秒前
57秒前
yshj完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
专注的从筠完成签到,获得积分10
3分钟前
lifenghou完成签到 ,获得积分10
3分钟前
3分钟前
wanci应助wawa采纳,获得10
3分钟前
3分钟前
wawa发布了新的文献求助10
4分钟前
4分钟前
4分钟前
nenoaowu发布了新的文献求助10
4分钟前
无花果应助nenoaowu采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
5分钟前
酷波er应助mingjiang采纳,获得10
5分钟前
5分钟前
Marciu33发布了新的文献求助10
5分钟前
呵呵贺哈完成签到 ,获得积分10
6分钟前
poki完成签到 ,获得积分10
6分钟前
傻瓜完成签到 ,获得积分10
6分钟前
Akim应助catherine采纳,获得10
6分钟前
6分钟前
6分钟前
mingjiang完成签到,获得积分10
6分钟前
小二郎应助科研通管家采纳,获得10
6分钟前
传奇3应助科研通管家采纳,获得10
6分钟前
lemon完成签到,获得积分10
6分钟前
lemon发布了新的文献求助10
6分钟前
7分钟前
直率的笑翠完成签到 ,获得积分10
7分钟前
7分钟前
科研通AI5应助wawa采纳,获得10
7分钟前
7分钟前
8分钟前
wawa发布了新的文献求助10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5007717
求助须知:如何正确求助?哪些是违规求助? 4250602
关于积分的说明 13243476
捐赠科研通 4051115
什么是DOI,文献DOI怎么找? 2216212
邀请新用户注册赠送积分活动 1225990
关于科研通互助平台的介绍 1147244