清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An enhanced sparrow search swarm optimizer via multi-strategies for high-dimensional optimization problems

计算机科学 群体行为 数学优化 元启发式 麻雀 粒子群优化 算法 人工智能 数学 生态学 生物
作者
Shuang Liang,Minghao Yin,Geng Sun,Jiahui Li,Hongjuan Li,Qi Lang
出处
期刊:Swarm and evolutionary computation [Elsevier BV]
卷期号:88: 101603-101603 被引量:3
标识
DOI:10.1016/j.swevo.2024.101603
摘要

With the development of science and technology, high-dimensional global optimization problems have become increasingly prevalent for scientific research and engineering, such as gene recognition, vehicle routing, job scheduling, and network topology. These problems are typically characterized by enormous and complex search spaces and numerous local minima, making it challenging to find the global optimal solution with limited computing resources. This paper introduces an enhanced sparrow search swarm optimizer (ESSSO) based on a bio-mimetic method. The ESSSO employs an adaptive sinusoidal walk strategy based on the von Mises distribution, a learning strategy utilizing roulette wheel selection, a two-stage evolution strategy, and a selection mutation strategy to address these issues. The proposed sinusoidal walk strategy, grounded in the von Mises distribution, supports a balanced evolutionary search. This mechanism disperses the individuals in a swarm in various directions based on a circular normal distribution. It then leads the search and adaptively adjusts their step sizes according to the size of the search domain during each generation of evolution. The learning strategy, based on roulette wheel selection, enhances the diversity of the population and improves the global search capability of the algorithm during the initial iterations. The two-stage evolution strategy involves a sine-learning mechanism based on the von Mises distribution and an adaptive mutation mechanism. The former is designed to boost the convergence speed of ESSSO, while the latter prevents ESSSO from getting trapped in a local optimum. Additionally, the selection mutation strategy further enhances convergence speed while maintaining population diversity. These strategies promote exploration in the early stages of evolution and exploitation in the later stages, enabling a well-balanced search for optimal solutions. We conducted comprehensive experiments two standard benchmark sets (i.e., CEC2010 and CEC2013), antenna array optimization, feature selection, and four engineering design problems. The results indicate that ESSSO outperforms ten comparison algorithms, especially in scenarios with smaller population sizes. This confirms its effectiveness in high-dimensional global optimization tasks and demonstrates that it can achieve better results with less computational resource consumption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助飞翔的企鹅采纳,获得10
5秒前
MMZ完成签到,获得积分10
7秒前
9秒前
www完成签到 ,获得积分10
16秒前
彩色的芷容完成签到 ,获得积分10
20秒前
刘丰完成签到 ,获得积分10
23秒前
小辉辉完成签到,获得积分20
27秒前
从容的水壶完成签到 ,获得积分10
34秒前
jason完成签到 ,获得积分10
41秒前
47秒前
50秒前
量子星尘发布了新的文献求助10
52秒前
yunt完成签到 ,获得积分10
54秒前
59秒前
红箭烟雨完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
Tong发布了新的文献求助20
1分钟前
南风完成签到 ,获得积分10
1分钟前
晓晓完成签到,获得积分10
1分钟前
迈克老狼完成签到 ,获得积分10
1分钟前
1分钟前
simon完成签到,获得积分10
1分钟前
荒天帝发布了新的文献求助10
1分钟前
安琪琪完成签到 ,获得积分10
1分钟前
夜雨完成签到 ,获得积分10
2分钟前
优雅的平安完成签到 ,获得积分10
2分钟前
你才是小哭包完成签到 ,获得积分10
2分钟前
kean1943完成签到,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
大饼完成签到 ,获得积分10
2分钟前
Herbs完成签到 ,获得积分10
2分钟前
荒天帝完成签到,获得积分10
2分钟前
Tong完成签到,获得积分10
2分钟前
真真完成签到 ,获得积分10
2分钟前
2分钟前
有机酸应助大白包子李采纳,获得50
3分钟前
3分钟前
3分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960149
求助须知:如何正确求助?哪些是违规求助? 3506286
关于积分的说明 11128821
捐赠科研通 3238363
什么是DOI,文献DOI怎么找? 1789736
邀请新用户注册赠送积分活动 871870
科研通“疑难数据库(出版商)”最低求助积分说明 803075