An enhanced sparrow search swarm optimizer via multi-strategies for high-dimensional optimization problems

计算机科学 群体行为 数学优化 元启发式 麻雀 粒子群优化 算法 人工智能 数学 生态学 生物
作者
Shuang Liang,Minghao Yin,Geng Sun,Jiahui Li,Hongjuan Li,Qi Lang
出处
期刊:Swarm and evolutionary computation [Elsevier]
卷期号:88: 101603-101603 被引量:1
标识
DOI:10.1016/j.swevo.2024.101603
摘要

With the development of science and technology, high-dimensional global optimization problems have become increasingly prevalent for scientific research and engineering, such as gene recognition, vehicle routing, job scheduling, and network topology. These problems are typically characterized by enormous and complex search spaces and numerous local minima, making it challenging to find the global optimal solution with limited computing resources. This paper introduces an enhanced sparrow search swarm optimizer (ESSSO) based on a bio-mimetic method. The ESSSO employs an adaptive sinusoidal walk strategy based on the von Mises distribution, a learning strategy utilizing roulette wheel selection, a two-stage evolution strategy, and a selection mutation strategy to address these issues. The proposed sinusoidal walk strategy, grounded in the von Mises distribution, supports a balanced evolutionary search. This mechanism disperses the individuals in a swarm in various directions based on a circular normal distribution. It then leads the search and adaptively adjusts their step sizes according to the size of the search domain during each generation of evolution. The learning strategy, based on roulette wheel selection, enhances the diversity of the population and improves the global search capability of the algorithm during the initial iterations. The two-stage evolution strategy involves a sine-learning mechanism based on the von Mises distribution and an adaptive mutation mechanism. The former is designed to boost the convergence speed of ESSSO, while the latter prevents ESSSO from getting trapped in a local optimum. Additionally, the selection mutation strategy further enhances convergence speed while maintaining population diversity. These strategies promote exploration in the early stages of evolution and exploitation in the later stages, enabling a well-balanced search for optimal solutions. We conducted comprehensive experiments two standard benchmark sets (i.e., CEC2010 and CEC2013), antenna array optimization, feature selection, and four engineering design problems. The results indicate that ESSSO outperforms ten comparison algorithms, especially in scenarios with smaller population sizes. This confirms its effectiveness in high-dimensional global optimization tasks and demonstrates that it can achieve better results with less computational resource consumption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老毕登完成签到,获得积分10
刚刚
tintin发布了新的文献求助10
刚刚
刚刚
1秒前
天天快乐应助zty采纳,获得10
2秒前
ORANGE完成签到,获得积分10
3秒前
4秒前
王海海完成签到,获得积分10
6秒前
痴痴的噜发布了新的文献求助10
6秒前
huang发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
二十六画生完成签到,获得积分10
7秒前
未语的阳光完成签到 ,获得积分10
8秒前
9秒前
10秒前
蒋蒋发布了新的文献求助10
11秒前
fff发布了新的文献求助10
12秒前
研友_Zlqx38发布了新的文献求助10
12秒前
zyh应助jeep先生采纳,获得10
12秒前
13秒前
13秒前
小周发布了新的文献求助10
13秒前
遇水发布了新的文献求助10
14秒前
Menkaz完成签到,获得积分10
15秒前
兴奋采梦完成签到,获得积分10
15秒前
hanlinhong发布了新的文献求助10
15秒前
yidemeihaoshijie完成签到 ,获得积分10
15秒前
17秒前
你好发布了新的文献求助10
18秒前
小将发布了新的文献求助10
18秒前
海陵吹风鸡完成签到,获得积分10
18秒前
自由傲珊完成签到,获得积分10
19秒前
今后应助wrufhg采纳,获得10
19秒前
hai完成签到,获得积分10
19秒前
英俊的铭应助hanlinhong采纳,获得10
20秒前
遇水完成签到,获得积分20
22秒前
开朗毒娘发布了新的文献求助10
22秒前
23秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145363
求助须知:如何正确求助?哪些是违规求助? 2796792
关于积分的说明 7821445
捐赠科研通 2453077
什么是DOI,文献DOI怎么找? 1305438
科研通“疑难数据库(出版商)”最低求助积分说明 627487
版权声明 601464