清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An enhanced sparrow search swarm optimizer via multi-strategies for high-dimensional optimization problems

计算机科学 群体行为 数学优化 元启发式 麻雀 粒子群优化 算法 人工智能 数学 生态学 生物
作者
Shuang Liang,Minghao Yin,Geng Sun,Jiahui Li,Hongjuan Li,Qi Lang
出处
期刊:Swarm and evolutionary computation [Elsevier]
卷期号:88: 101603-101603 被引量:3
标识
DOI:10.1016/j.swevo.2024.101603
摘要

With the development of science and technology, high-dimensional global optimization problems have become increasingly prevalent for scientific research and engineering, such as gene recognition, vehicle routing, job scheduling, and network topology. These problems are typically characterized by enormous and complex search spaces and numerous local minima, making it challenging to find the global optimal solution with limited computing resources. This paper introduces an enhanced sparrow search swarm optimizer (ESSSO) based on a bio-mimetic method. The ESSSO employs an adaptive sinusoidal walk strategy based on the von Mises distribution, a learning strategy utilizing roulette wheel selection, a two-stage evolution strategy, and a selection mutation strategy to address these issues. The proposed sinusoidal walk strategy, grounded in the von Mises distribution, supports a balanced evolutionary search. This mechanism disperses the individuals in a swarm in various directions based on a circular normal distribution. It then leads the search and adaptively adjusts their step sizes according to the size of the search domain during each generation of evolution. The learning strategy, based on roulette wheel selection, enhances the diversity of the population and improves the global search capability of the algorithm during the initial iterations. The two-stage evolution strategy involves a sine-learning mechanism based on the von Mises distribution and an adaptive mutation mechanism. The former is designed to boost the convergence speed of ESSSO, while the latter prevents ESSSO from getting trapped in a local optimum. Additionally, the selection mutation strategy further enhances convergence speed while maintaining population diversity. These strategies promote exploration in the early stages of evolution and exploitation in the later stages, enabling a well-balanced search for optimal solutions. We conducted comprehensive experiments two standard benchmark sets (i.e., CEC2010 and CEC2013), antenna array optimization, feature selection, and four engineering design problems. The results indicate that ESSSO outperforms ten comparison algorithms, especially in scenarios with smaller population sizes. This confirms its effectiveness in high-dimensional global optimization tasks and demonstrates that it can achieve better results with less computational resource consumption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
10秒前
12秒前
16秒前
CodeCraft应助科研通管家采纳,获得10
20秒前
20秒前
22秒前
27秒前
33秒前
34秒前
博弈完成签到 ,获得积分10
35秒前
Fei发布了新的文献求助10
36秒前
45秒前
46秒前
量子星尘发布了新的文献求助10
48秒前
知闲发布了新的文献求助10
51秒前
两个榴莲完成签到,获得积分0
54秒前
57秒前
1分钟前
1分钟前
1分钟前
1分钟前
Gloam发布了新的文献求助10
1分钟前
1分钟前
星辰大海应助王雅采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Gloam完成签到,获得积分20
1分钟前
1分钟前
耀健完成签到,获得积分10
1分钟前
1分钟前
Gloam关注了科研通微信公众号
1分钟前
1分钟前
快乐的素完成签到 ,获得积分10
1分钟前
云书完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
在水一方应助知闲采纳,获得10
1分钟前
1分钟前
LING发布了新的文献求助10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5688129
求助须知:如何正确求助?哪些是违规求助? 5063718
关于积分的说明 15193691
捐赠科研通 4846465
什么是DOI,文献DOI怎么找? 2598868
邀请新用户注册赠送积分活动 1550976
关于科研通互助平台的介绍 1509573