A Generative Adversarial Networks Model Based Evolutionary Algorithm for Multimodal Multi-Objective Optimization

对抗制 生成语法 计算机科学 进化算法 人工智能 优化算法 多目标优化 算法 机器学习 数学优化 数学
作者
Qianlong Dang,Guanghui Zhang,Ling Wang,Shuai Yang,Tao Zhan
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10 被引量:16
标识
DOI:10.1109/tetci.2024.3397996
摘要

The key to solving multimodal multi-objective optimization problems is to achieve good diversity in the decision space. However, the existing algorithms usually adopt the reproduction operation based on random mechanism, which do not make full use of the distribution features of promising solutions in the population, resulting in the defects of the diversity of the obtained Parteo optimal solution sets. In order to solve the above problem, this paper proposes a multimodal multi-objective optimization evolutionary algorithm (MMOEA) based on generative adversarial networks (GANs). Specifically, we firstly design a classification strategy to distinguish good solutions from poor solutions. The solutions in the population are classified as real samples and fake samples by non-dominated selection sorting based on special crowding distance, and the training data of GANs are obtained. Secondly, a GANs-based offspring generation method is proposed. Through the adversarial training of GANs, the generator can simulate the distribution of promising solutions in the population and generate offspring with good diversity. Thirdly, an environment selection strategy based on GANs is constructed. By sorting the classification probability of the solutions output by the discriminator, the population are selected and updated. Finally, the proposed algorithm is compared with seven other competitive multimodal multi-objective optimization evolutionary algorithms on the CEC 2019 test suite and a real-word problem, and experimental results indicate its superior performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Violazheng228发布了新的文献求助10
1秒前
Yichao完成签到,获得积分10
1秒前
冷静剑鬼完成签到,获得积分10
1秒前
Wangle发布了新的文献求助10
1秒前
学习发布了新的文献求助10
1秒前
LIBINWANG发布了新的文献求助30
1秒前
虚心的夜山完成签到,获得积分10
2秒前
2秒前
elysia发布了新的文献求助10
2秒前
5秒前
5秒前
6秒前
坚定的怜菡完成签到,获得积分20
6秒前
田様应助负责的元柏采纳,获得10
7秒前
7秒前
落寞成危完成签到,获得积分20
7秒前
8秒前
学习完成签到,获得积分20
8秒前
hbhbj发布了新的文献求助10
8秒前
Doc邓爱科研完成签到,获得积分10
8秒前
王译自发布了新的文献求助10
8秒前
8秒前
9秒前
10秒前
安然发布了新的文献求助10
10秒前
小二郎应助elysia采纳,获得10
10秒前
独特振家发布了新的文献求助10
10秒前
10秒前
10秒前
Criminology34应助修辛采纳,获得10
11秒前
LIBINWANG完成签到,获得积分20
11秒前
喵喵喵发布了新的文献求助10
11秒前
12秒前
星辰给星辰的求助进行了留言
12秒前
冰蓝色的忧伤完成签到,获得积分10
13秒前
科研通AI6应助松哥采纳,获得10
13秒前
13秒前
852应助张宝采纳,获得10
13秒前
高小h发布了新的文献求助10
14秒前
LFH发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5406795
求助须知:如何正确求助?哪些是违规求助? 4524516
关于积分的说明 14098938
捐赠科研通 4438379
什么是DOI,文献DOI怎么找? 2436217
邀请新用户注册赠送积分活动 1428245
关于科研通互助平台的介绍 1406340