A Generative Adversarial Networks Model Based Evolutionary Algorithm for Multimodal Multi-Objective Optimization

对抗制 生成语法 计算机科学 进化算法 人工智能 优化算法 多目标优化 算法 机器学习 数学优化 数学
作者
Qianlong Dang,Guanghui Zhang,Ling Wang,Shuai Yang,Tao Zhan
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10 被引量:16
标识
DOI:10.1109/tetci.2024.3397996
摘要

The key to solving multimodal multi-objective optimization problems is to achieve good diversity in the decision space. However, the existing algorithms usually adopt the reproduction operation based on random mechanism, which do not make full use of the distribution features of promising solutions in the population, resulting in the defects of the diversity of the obtained Parteo optimal solution sets. In order to solve the above problem, this paper proposes a multimodal multi-objective optimization evolutionary algorithm (MMOEA) based on generative adversarial networks (GANs). Specifically, we firstly design a classification strategy to distinguish good solutions from poor solutions. The solutions in the population are classified as real samples and fake samples by non-dominated selection sorting based on special crowding distance, and the training data of GANs are obtained. Secondly, a GANs-based offspring generation method is proposed. Through the adversarial training of GANs, the generator can simulate the distribution of promising solutions in the population and generate offspring with good diversity. Thirdly, an environment selection strategy based on GANs is constructed. By sorting the classification probability of the solutions output by the discriminator, the population are selected and updated. Finally, the proposed algorithm is compared with seven other competitive multimodal multi-objective optimization evolutionary algorithms on the CEC 2019 test suite and a real-word problem, and experimental results indicate its superior performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
岁岁完成签到 ,获得积分10
1秒前
2秒前
慢慢完成签到,获得积分10
2秒前
境屾发布了新的文献求助30
2秒前
不安灵竹发布了新的文献求助10
4秒前
zqh发布了新的文献求助10
5秒前
冯心雨完成签到,获得积分10
5秒前
Boyce发布了新的文献求助10
6秒前
7秒前
bono完成签到 ,获得积分10
8秒前
董春伟完成签到,获得积分10
8秒前
9秒前
机灵雨南发布了新的文献求助10
9秒前
刘某发布了新的文献求助10
11秒前
从容面包关注了科研通微信公众号
11秒前
健壮的花瓣完成签到 ,获得积分10
12秒前
11完成签到,获得积分10
13秒前
13秒前
15秒前
Ithesleepyhead完成签到 ,获得积分10
15秒前
Hello应助溜溜小雁子采纳,获得10
16秒前
核桃发布了新的文献求助10
16秒前
如初发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
16秒前
11111完成签到 ,获得积分10
18秒前
热爱完成签到,获得积分10
19秒前
黒子鳥关注了科研通微信公众号
19秒前
科研通AI6应助谦让的博采纳,获得10
19秒前
20秒前
互助遵法尚德完成签到,获得积分0
21秒前
七个丸子应助刘某采纳,获得10
21秒前
爱吃橙子完成签到 ,获得积分10
22秒前
22秒前
科研通AI2S应助11采纳,获得10
22秒前
浮游应助小卷心菜采纳,获得10
22秒前
24秒前
arthur完成签到,获得积分10
24秒前
26秒前
你我山巅自相逢完成签到 ,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5069566
求助须知:如何正确求助?哪些是违规求助? 4290887
关于积分的说明 13368927
捐赠科研通 4111055
什么是DOI,文献DOI怎么找? 2251251
邀请新用户注册赠送积分活动 1256459
关于科研通互助平台的介绍 1188939