A Generative Adversarial Networks Model Based Evolutionary Algorithm for Multimodal Multi-Objective Optimization

对抗制 生成语法 计算机科学 进化算法 人工智能 优化算法 多目标优化 算法 机器学习 数学优化 数学
作者
Qianlong Dang,Guanghui Zhang,Ling Wang,Shuai Yang,Tao Zhan
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10 被引量:10
标识
DOI:10.1109/tetci.2024.3397996
摘要

The key to solving multimodal multi-objective optimization problems is to achieve good diversity in the decision space. However, the existing algorithms usually adopt the reproduction operation based on random mechanism, which do not make full use of the distribution features of promising solutions in the population, resulting in the defects of the diversity of the obtained Parteo optimal solution sets. In order to solve the above problem, this paper proposes a multimodal multi-objective optimization evolutionary algorithm (MMOEA) based on generative adversarial networks (GANs). Specifically, we firstly design a classification strategy to distinguish good solutions from poor solutions. The solutions in the population are classified as real samples and fake samples by non-dominated selection sorting based on special crowding distance, and the training data of GANs are obtained. Secondly, a GANs-based offspring generation method is proposed. Through the adversarial training of GANs, the generator can simulate the distribution of promising solutions in the population and generate offspring with good diversity. Thirdly, an environment selection strategy based on GANs is constructed. By sorting the classification probability of the solutions output by the discriminator, the population are selected and updated. Finally, the proposed algorithm is compared with seven other competitive multimodal multi-objective optimization evolutionary algorithms on the CEC 2019 test suite and a real-word problem, and experimental results indicate its superior performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助jinjin采纳,获得10
1秒前
YifanWang应助plasmid采纳,获得30
1秒前
鱼蛋超人完成签到,获得积分20
1秒前
1秒前
天天快乐应助123采纳,获得10
2秒前
所所应助笑点低芫采纳,获得10
2秒前
天道酬勤完成签到,获得积分10
2秒前
Sun发布了新的文献求助10
2秒前
ssp关闭了ssp文献求助
3秒前
tomorrow发布了新的文献求助10
3秒前
认真的火发布了新的文献求助10
4秒前
5秒前
冷酷鱼完成签到,获得积分10
6秒前
Owen应助牛牛采纳,获得10
6秒前
6秒前
6秒前
英俊水池发布了新的文献求助10
6秒前
6秒前
YY发布了新的文献求助10
6秒前
hucchongzi应助向阳采纳,获得10
7秒前
搜集达人应助Liu采纳,获得10
7秒前
嘟嘟完成签到,获得积分10
9秒前
10秒前
11秒前
艺术家发布了新的文献求助10
11秒前
11秒前
golden完成签到,获得积分10
12秒前
13秒前
彭于彦祖应助178181采纳,获得30
13秒前
上官若男应助要减肥的莛采纳,获得10
13秒前
14秒前
在水一方应助认真的火采纳,获得10
15秒前
15秒前
15秒前
凉凉盛夏完成签到,获得积分10
16秒前
16秒前
ykmykm完成签到,获得积分20
17秒前
Lemon发布了新的文献求助20
17秒前
17秒前
乏味发布了新的文献求助10
17秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979392
求助须知:如何正确求助?哪些是违规求助? 3523308
关于积分的说明 11217159
捐赠科研通 3260797
什么是DOI,文献DOI怎么找? 1800211
邀请新用户注册赠送积分活动 878960
科研通“疑难数据库(出版商)”最低求助积分说明 807113