Detection and Statistics System of Pavement Distresses Based on Street View Videos

运输工程 统计 计算机科学 人工智能 计算机视觉 工程类 数学
作者
Z.B. Zhang,Fang Liu,Yucheng Huang,Yue Hou
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10
标识
DOI:10.1109/tits.2024.3401150
摘要

Timely detection and statistical analysis of pavement distresses are essential for improving road maintenance efficiency. However, traditional methods for pavement defect detection face challenges such as inefficiency and high equipment costs. In response to these challenges, this paper proposes a pavement defect detection and statistical system based on street view videos. Initially, we introduce an enhanced algorithm named SN-YOLO (Slim-neck YOLO) designed to address the issue of low model detection accuracy in complex background environments meanwhile achieve model lightweighting. Specifically, the GSConv lightweight convolution module is employed to minimize the model size, while the VoVGSCSP and VoVGSCSP-cheap modules are incorporated to augment the original C2f module, thereby refining the model's recognition capabilities in intricate backgrounds. Moreover, by incorporating Soft-NMS for post-processing optimization, the model's robustness in detecting multi-scale defects is enhanced. Experimental results on the open-source dataset RDD2022 and a proprietary dataset demonstrate that the improved SN-YOLO algorithm surpasses current state-of-the-art methods. Furthermore, by leveraging the SN-YOLO algorithm and the Deep oc-sort tracking algorithm, we develop a deployable pavement distress detection and statistic system. In the application to real-world road street view video analysis, the system exhibits unparalleled accuracy and efficiency in defect detection and data compilation, presenting a robust solution for expedited, large-scale assessment of pavement conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sunny完成签到,获得积分10
刚刚
1秒前
所所应助大意的安白采纳,获得10
1秒前
elena发布了新的文献求助10
1秒前
1秒前
Tal完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
2秒前
2秒前
Orange应助毕业就好采纳,获得10
3秒前
机灵画板发布了新的文献求助10
3秒前
4秒前
4秒前
桐桐应助Elaine采纳,获得10
4秒前
Ymj发布了新的文献求助10
5秒前
JamesPei应助yyf采纳,获得10
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
6秒前
enoot发布了新的文献求助10
6秒前
6秒前
盘尼西林完成签到 ,获得积分10
6秒前
6秒前
7秒前
liutaili完成签到,获得积分10
7秒前
PXY完成签到,获得积分10
7秒前
8秒前
DrLiu发布了新的文献求助10
8秒前
WxChen发布了新的文献求助10
8秒前
小马甲应助仄兀采纳,获得10
8秒前
YAN关闭了YAN文献求助
8秒前
杏花饼发布了新的文献求助10
8秒前
筱星完成签到,获得积分10
9秒前
aaaaa发布了新的文献求助10
9秒前
宇文宛菡发布了新的文献求助10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740