Detection and Statistics System of Pavement Distresses Based on Street View Videos

运输工程 统计 计算机科学 人工智能 计算机视觉 工程类 数学
作者
Z.B. Zhang,Fang Liu,Yucheng Huang,Yue Hou
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10
标识
DOI:10.1109/tits.2024.3401150
摘要

Timely detection and statistical analysis of pavement distresses are essential for improving road maintenance efficiency. However, traditional methods for pavement defect detection face challenges such as inefficiency and high equipment costs. In response to these challenges, this paper proposes a pavement defect detection and statistical system based on street view videos. Initially, we introduce an enhanced algorithm named SN-YOLO (Slim-neck YOLO) designed to address the issue of low model detection accuracy in complex background environments meanwhile achieve model lightweighting. Specifically, the GSConv lightweight convolution module is employed to minimize the model size, while the VoVGSCSP and VoVGSCSP-cheap modules are incorporated to augment the original C2f module, thereby refining the model's recognition capabilities in intricate backgrounds. Moreover, by incorporating Soft-NMS for post-processing optimization, the model's robustness in detecting multi-scale defects is enhanced. Experimental results on the open-source dataset RDD2022 and a proprietary dataset demonstrate that the improved SN-YOLO algorithm surpasses current state-of-the-art methods. Furthermore, by leveraging the SN-YOLO algorithm and the Deep oc-sort tracking algorithm, we develop a deployable pavement distress detection and statistic system. In the application to real-world road street view video analysis, the system exhibits unparalleled accuracy and efficiency in defect detection and data compilation, presenting a robust solution for expedited, large-scale assessment of pavement conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助塔菲尔采纳,获得10
刚刚
严俊东发布了新的文献求助10
3秒前
Jalynn2044发布了新的文献求助30
5秒前
摇一摇发布了新的文献求助10
5秒前
不配.应助SPQR采纳,获得10
6秒前
6秒前
7秒前
cosimo完成签到 ,获得积分10
8秒前
8秒前
8秒前
yangyajie发布了新的文献求助10
10秒前
穿堂风发布了新的文献求助10
10秒前
yellow完成签到,获得积分10
10秒前
wcy发布了新的文献求助10
11秒前
12秒前
呆萌的莲发布了新的文献求助10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
Jasper应助科研通管家采纳,获得10
12秒前
Jasper应助科研通管家采纳,获得10
12秒前
wanci应助科研通管家采纳,获得10
13秒前
13秒前
隐形曼青应助精明的满天采纳,获得10
13秒前
13秒前
浅尝离白应助科研通管家采纳,获得30
13秒前
13秒前
Lucas应助科研通管家采纳,获得10
13秒前
大模型应助科研通管家采纳,获得10
13秒前
上官若男应助科研通管家采纳,获得10
13秒前
爆米花应助科研通管家采纳,获得10
13秒前
13秒前
小二郎应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
英俊的铭应助科研通管家采纳,获得10
14秒前
14秒前
bkagyin应助科研通管家采纳,获得10
14秒前
ding应助科研通管家采纳,获得10
14秒前
李爱国应助科研通管家采纳,获得10
14秒前
情怀应助科研通管家采纳,获得10
14秒前
FashionBoy应助科研通管家采纳,获得10
14秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136581
求助须知:如何正确求助?哪些是违规求助? 2787645
关于积分的说明 7782406
捐赠科研通 2443643
什么是DOI,文献DOI怎么找? 1299325
科研通“疑难数据库(出版商)”最低求助积分说明 625429
版权声明 600954