已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Detection and Statistics System of Pavement Distresses Based on Street View Videos

运输工程 统计 计算机科学 人工智能 计算机视觉 工程类 数学
作者
Zhiyuan Zhang,Fang Liu,Yucheng Huang,Yue Hou
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (10): 15106-15115 被引量:1
标识
DOI:10.1109/tits.2024.3401150
摘要

Timely detection and statistical analysis of pavement distresses are essential for improving road maintenance efficiency. However, traditional methods for pavement defect detection face challenges such as inefficiency and high equipment costs. In response to these challenges, this paper proposes a pavement defect detection and statistical system based on street view videos. Initially, we introduce an enhanced algorithm named SN-YOLO (Slim-neck YOLO) designed to address the issue of low model detection accuracy in complex background environments meanwhile achieve model lightweighting. Specifically, the GSConv lightweight convolution module is employed to minimize the model size, while the VoVGSCSP and VoVGSCSP-cheap modules are incorporated to augment the original C2f module, thereby refining the model's recognition capabilities in intricate backgrounds. Moreover, by incorporating Soft-NMS for post-processing optimization, the model's robustness in detecting multi-scale defects is enhanced. Experimental results on the open-source dataset RDD2022 and a proprietary dataset demonstrate that the improved SN-YOLO algorithm surpasses current state-of-the-art methods. Furthermore, by leveraging the SN-YOLO algorithm and the Deep oc-sort tracking algorithm, we develop a deployable pavement distress detection and statistic system. In the application to real-world road street view video analysis, the system exhibits unparalleled accuracy and efficiency in defect detection and data compilation, presenting a robust solution for expedited, large-scale assessment of pavement conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
Re完成签到,获得积分10
9秒前
呆萌井完成签到,获得积分10
9秒前
粗心的忆山完成签到 ,获得积分10
9秒前
xky200125完成签到 ,获得积分10
10秒前
13秒前
CipherSage应助灰灰采纳,获得10
13秒前
刻苦迎波完成签到,获得积分10
14秒前
15秒前
wuyuan完成签到,获得积分10
16秒前
Lucas应助刘浩采纳,获得10
17秒前
luo发布了新的文献求助20
18秒前
啊哈哈哈完成签到 ,获得积分10
18秒前
HERACLE完成签到 ,获得积分10
18秒前
合适的涫完成签到,获得积分10
19秒前
20秒前
合适的涫发布了新的文献求助10
22秒前
24秒前
传奇3应助少年啊采纳,获得10
28秒前
sunshine发布了新的文献求助10
29秒前
30秒前
如意的冰双完成签到 ,获得积分10
33秒前
依桉完成签到 ,获得积分10
34秒前
达达完成签到,获得积分20
36秒前
虚幻的水卉完成签到,获得积分10
36秒前
叶然完成签到 ,获得积分10
37秒前
38秒前
竹筏过海应助三金采纳,获得30
38秒前
珍珍真不吃香菜完成签到 ,获得积分10
39秒前
40秒前
斯文无敌完成签到,获得积分10
41秒前
yuqinghui98完成签到 ,获得积分10
43秒前
哎小伙子发布了新的文献求助10
44秒前
47秒前
xinxin发布了新的文献求助10
51秒前
13515完成签到 ,获得积分20
53秒前
mathmotive完成签到,获得积分10
54秒前
55秒前
大方的听露完成签到,获得积分10
55秒前
56秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639400
求助须知:如何正确求助?哪些是违规求助? 4748007
关于积分的说明 15006238
捐赠科研通 4797572
什么是DOI,文献DOI怎么找? 2563542
邀请新用户注册赠送积分活动 1522544
关于科研通互助平台的介绍 1482258