Regulating the electronic state of SnO2@NiFe-LDH heterojunction: Activating lattice oxygen for efficient oxygen evolution reaction

异质结 氧气 材料科学 析氧 格子(音乐) 凝聚态物理 化学物理 化学工程 光电子学 纳米技术 化学 物理化学 物理 电极 电化学 工程类 有机化学 声学
作者
Chaojie Yin,Fanghe Zhou,Chunliang Ding,Shengde Jin,Rui Zhu,Jiang Wu,Wenhao Li,Yang Wu,Jia Horng Lin,Xinxia Ma,Jinao Deng,Zhongjun Zhao
出处
期刊:Fuel [Elsevier]
卷期号:370: 131762-131762 被引量:11
标识
DOI:10.1016/j.fuel.2024.131762
摘要

In Oxygen Evolution Reaction (OER), catalysts with lattice oxygen, utilizing the Lattice Oxygen Mechanism (LOM), directly participate in oxygen evolution, effectively reducing activation energy. NiFe-Layered Double Hydroxides (NiFe-LDHs), rich in surface hydroxyls, are potential for LOM. However, their stability is challenged in alkaline conditions due to metal cation dissolution from the lattice, limiting catalytic efficiency. In this work, we modify NiFe-LDH by combining hydrothermal and electrodeposition techniques, coupling NiFe-LDH with the metal oxide SnO2. This process creates a heterojunction enriched with oxygen vacancies through interfacial and defect engineering. In 1 M KOH solution, this modified catalyst exhibits an OER overpotential of just 209 mV at a current density of 10 mA cm−2. Furthermore, when the current density is increased to 100 mA cm−2, the overpotential only increases by a modest 46 mV. Subsequent DFT investigations reveal that in the heterostructured system, there is an enhanced overlap between the O 2p and metal 3d orbitals, which optimizes the covalency of the metal–oxygen bond and promotes the participation of lattice oxygen in the reduction reaction. The heterojunction, in concert with oxygen vacancies, aligns the energy bands of oxygen and metal closer to the Fermi level, resulting in improved continuity of electronic orbitals near the Fermi level. This synergistic arrangement significantly reduces the energy barrier for the rate-determining step of the OER, substantiating the improved performance and activation of lattice oxygen.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
耿宇航完成签到 ,获得积分10
刚刚
syyw2021发布了新的文献求助10
刚刚
FashionBoy应助BOB采纳,获得10
1秒前
田様应助Promise采纳,获得10
1秒前
infer1024完成签到 ,获得积分10
1秒前
CodeCraft应助皮卡丘采纳,获得10
1秒前
123321完成签到,获得积分10
1秒前
1秒前
Rui豆豆完成签到,获得积分10
2秒前
科研通AI2S应助zm采纳,获得10
2秒前
2秒前
3秒前
兴奋硬币发布了新的文献求助10
3秒前
所所应助JoySue采纳,获得10
3秒前
彭于晏应助搞怪泥猴桃采纳,获得10
3秒前
奥利给发布了新的文献求助10
4秒前
爱科研发布了新的文献求助10
4秒前
liyanglin发布了新的文献求助10
4秒前
香蕉觅云应助yy122采纳,获得10
4秒前
4秒前
小赖完成签到,获得积分10
5秒前
6秒前
henzhidequxian完成签到,获得积分10
6秒前
竹筏过海应助四级采纳,获得30
6秒前
科研通AI5应助upward采纳,获得10
7秒前
meikoo发布了新的文献求助10
7秒前
7秒前
7秒前
熠烁发布了新的文献求助30
8秒前
NexusExplorer应助一只王火火采纳,获得10
8秒前
漂亮的酸奶完成签到,获得积分10
8秒前
衰神发布了新的文献求助10
9秒前
9秒前
9秒前
无花果应助欢喜大地采纳,获得10
10秒前
10秒前
10秒前
蟹黄堡完成签到,获得积分10
10秒前
10秒前
CodeCraft应助CC采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3515364
求助须知:如何正确求助?哪些是违规求助? 3097702
关于积分的说明 9236476
捐赠科研通 2792578
什么是DOI,文献DOI怎么找? 1532606
邀请新用户注册赠送积分活动 712198
科研通“疑难数据库(出版商)”最低求助积分说明 707160