A feature extractor for temporal data of electronic nose based on parallel long short-term memory network in flavor discrimination of Chinese vinegars

提取器 电子鼻 特征(语言学) 期限(时间) 风味 模式识别(心理学) 计算机科学 人工智能 工程类 化学 工艺工程 食品科学 物理 语言学 哲学 量子力学
作者
Yufei Chen,Jun Fu,Xisheng Weng,Jiaoni Chen,Ruifen Hu,Yunfang Zhu
出处
期刊:Journal of Food Engineering [Elsevier]
卷期号:379: 112132-112132
标识
DOI:10.1016/j.jfoodeng.2024.112132
摘要

Volatile flavor is a key indicator of food quality which can directly affect consumer preference and purchase intention. Electronic nose is considered as a promising intelligent sensory analysis tool for food flavor assessment, however, extracting effective features from the gas sensor array is still a major challenge, which largely determines the performance of subsequent classifiers. Here, a parallel long short-term memory (LSTM) network is proposed as a feature extractor for automatically extracting features from the whole time series of sensor responses in flavor discrimination of five Chinese vinegars. The network was trained by the temporal data from the sensor array and yielded different feature patterns corresponding to different vinegars, which were then fed to other conventional classifiers for pattern recognition. We also evaluated the influence of the extracted feature dimension that is related to the dimension of the hidden state of the LSTM layer on the classification performance. The results indicate that a larger dimension of extracted feature is unnecessary for promoting classification accuracy, instead, the optimum dimension 4 of the hidden state gives the highest accuracy of 95.8% in this application under the softmax evaluator. Moreover, much higher accuracies were obtained when combined with other sophisticated classifiers such as support vector machine. The results demonstrate that the proposed network is competent to extract features directly and automatically from the temporal data of the electronic nose.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
海洋球完成签到,获得积分10
4秒前
5秒前
充电宝应助安静碧灵采纳,获得10
6秒前
热情诗云发布了新的文献求助10
7秒前
lk发布了新的文献求助10
8秒前
Chen完成签到,获得积分10
8秒前
14秒前
16秒前
优秀的语兰完成签到,获得积分10
17秒前
小小猪完成签到,获得积分10
18秒前
20秒前
Hayat发布了新的文献求助10
20秒前
周兰兰发布了新的文献求助10
21秒前
22秒前
安静的明辉完成签到,获得积分10
25秒前
布布爱吃炸鸡完成签到,获得积分10
28秒前
周兰兰完成签到,获得积分10
28秒前
28秒前
29秒前
旧旧完成签到 ,获得积分10
30秒前
老八完成签到,获得积分10
32秒前
落寞蓝天发布了新的文献求助10
35秒前
勤奋的热狗完成签到 ,获得积分10
38秒前
happy完成签到,获得积分10
40秒前
43秒前
宜醉宜游宜睡应助lanbing802采纳,获得10
43秒前
44秒前
宣洋发布了新的文献求助10
47秒前
托塔小姐完成签到,获得积分10
47秒前
在水一方应助清脆的丹南采纳,获得10
49秒前
余琳发布了新的文献求助10
49秒前
51秒前
旧梦发布了新的文献求助10
52秒前
55秒前
清脆的丹南完成签到,获得积分10
55秒前
57秒前
ywq发布了新的文献求助10
57秒前
58秒前
宣洋完成签到,获得积分20
58秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161053
求助须知:如何正确求助?哪些是违规求助? 2812453
关于积分的说明 7895410
捐赠科研通 2471252
什么是DOI,文献DOI怎么找? 1315934
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602094