A feature extractor for temporal data of electronic nose based on parallel long short-term memory network in flavor discrimination of Chinese vinegars

提取器 电子鼻 特征(语言学) 期限(时间) 风味 模式识别(心理学) 计算机科学 人工智能 工程类 化学 工艺工程 食品科学 物理 语言学 量子力学 哲学
作者
Yufei Chen,Jun Fu,Xisheng Weng,Jiaoni Chen,Ruifen Hu,Yunfang Zhu
出处
期刊:Journal of Food Engineering [Elsevier BV]
卷期号:379: 112132-112132
标识
DOI:10.1016/j.jfoodeng.2024.112132
摘要

Volatile flavor is a key indicator of food quality which can directly affect consumer preference and purchase intention. Electronic nose is considered as a promising intelligent sensory analysis tool for food flavor assessment, however, extracting effective features from the gas sensor array is still a major challenge, which largely determines the performance of subsequent classifiers. Here, a parallel long short-term memory (LSTM) network is proposed as a feature extractor for automatically extracting features from the whole time series of sensor responses in flavor discrimination of five Chinese vinegars. The network was trained by the temporal data from the sensor array and yielded different feature patterns corresponding to different vinegars, which were then fed to other conventional classifiers for pattern recognition. We also evaluated the influence of the extracted feature dimension that is related to the dimension of the hidden state of the LSTM layer on the classification performance. The results indicate that a larger dimension of extracted feature is unnecessary for promoting classification accuracy, instead, the optimum dimension 4 of the hidden state gives the highest accuracy of 95.8% in this application under the softmax evaluator. Moreover, much higher accuracies were obtained when combined with other sophisticated classifiers such as support vector machine. The results demonstrate that the proposed network is competent to extract features directly and automatically from the temporal data of the electronic nose.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卡卡123发布了新的文献求助10
1秒前
轻松的惜芹应助苦哈哈采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
李爱国应助樊小雾采纳,获得10
3秒前
5High_0发布了新的文献求助10
4秒前
搜集达人应助祥子的骆驼采纳,获得10
4秒前
小二郎应助mm采纳,获得10
4秒前
小马甲应助dsfsd采纳,获得10
4秒前
5秒前
HenryXiao发布了新的文献求助10
5秒前
天天快乐应助花生采纳,获得10
5秒前
6秒前
金不换完成签到,获得积分10
6秒前
6秒前
hxl发布了新的文献求助30
6秒前
7秒前
VelesAlexei完成签到,获得积分10
7秒前
田様应助小粉红wow~~~采纳,获得10
8秒前
8秒前
猪猪hero发布了新的文献求助10
8秒前
hdh发布了新的文献求助10
9秒前
coke发布了新的文献求助10
9秒前
硬膜之下完成签到,获得积分10
9秒前
zyzhnu完成签到,获得积分10
9秒前
大力凡儿完成签到 ,获得积分10
10秒前
笑羽发布了新的文献求助10
10秒前
10秒前
Ryuki完成签到 ,获得积分10
12秒前
12秒前
毛毛发布了新的文献求助10
12秒前
13秒前
13秒前
Jiayi完成签到,获得积分10
13秒前
13秒前
14秒前
酷波er应助巴拉巴拉巴采纳,获得10
15秒前
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650