Student Interaction with NewtBot: An LLM-as-tutor Chatbot for Secondary Physics Education

聊天机器人 导师 可解释性 计算机科学 数学教育 万维网 医学教育 人工智能 心理学 医学
作者
Anna Lieb,Toshali Goel
标识
DOI:10.1145/3613905.3647957
摘要

Chatbots based on state-of-the-art large language models (LLMs) hold potential to act as beneficial educational tools. However, challenges to LLMs in education include concerns about not only the accuracy and interpretability of AI-generated text, but also about productive student engagement and positive user experience with LLM chatbots. In this paper, we introduce a physics education chatbot called NewtBot. We designed NewtBot to act as a personalized automated tutor to support secondary students' learning as they complete physics tasks. NewtBot's web interface has a modifiable back-end that internally prompts GPT-3.5 to produce different LLM behaviors. In a user study with German secondary school students (n=50), we evaluated student interactions with three different configurations of the GPT-3.5 back-end: a general-purpose "baseline" model, a setting-specific "tutor" model, and a problem-specific "feedback" model. We find that students had overall positive experiences using NewtBot, and that the setting-specific "tutor" model had the highest user experience ratings. Additionally, despite a majority of participants (72%) expressing apprehensions about using chatbots for school, 70% said they would use NewtBot to help with their physics school work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sun发布了新的文献求助30
2秒前
香辣曲奇发布了新的文献求助10
2秒前
李爱国应助hua采纳,获得10
2秒前
柯夫子完成签到,获得积分10
4秒前
酷波er应助11采纳,获得10
5秒前
若ruofeng应助janice采纳,获得10
6秒前
平安喜乐完成签到,获得积分10
7秒前
球球昂完成签到,获得积分10
7秒前
8秒前
9秒前
12秒前
XJ应助顺利紫山采纳,获得10
12秒前
13秒前
钟美莲发布了新的文献求助10
14秒前
16秒前
17秒前
红宝石设计局完成签到,获得积分10
19秒前
20秒前
沉默完成签到,获得积分10
25秒前
小诗发布了新的文献求助30
25秒前
27秒前
29秒前
烟花应助Hayat采纳,获得10
31秒前
难过大神完成签到,获得积分10
32秒前
cdercder应助Rjy采纳,获得10
32秒前
34秒前
34秒前
彭于晏应助dasfdufos采纳,获得10
35秒前
mo发布了新的文献求助20
35秒前
马凯完成签到,获得积分10
35秒前
35秒前
小诗完成签到,获得积分20
35秒前
Baekhyun完成签到,获得积分10
35秒前
loin发布了新的文献求助30
39秒前
刻苦鼠标发布了新的文献求助20
39秒前
Orange应助科研通管家采纳,获得10
42秒前
元谷雪应助科研通管家采纳,获得10
42秒前
42秒前
香蕉觅云应助科研通管家采纳,获得10
42秒前
科研通AI5应助科研通管家采纳,获得10
42秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738291
求助须知:如何正确求助?哪些是违规求助? 3281789
关于积分的说明 10026606
捐赠科研通 2998667
什么是DOI,文献DOI怎么找? 1645317
邀请新用户注册赠送积分活动 782748
科研通“疑难数据库(出版商)”最低求助积分说明 749901