A novel decoupling method of compound faults with incomplete dataset of rotating machinery

解耦(概率) 计算机科学 控制理论(社会学) 可靠性工程 人工智能 控制工程 工程类 控制(管理)
作者
Aijun Hu,Bowen Yang,Lei Xing,Tianxiao Yu,Ling Xiang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (8): 086136-086136
标识
DOI:10.1088/1361-6501/ad49bb
摘要

Abstract The occurrence of fault in rotating machinery is random and complex, and the diagnosis of the compound faults has been a challenge in industrial production. Accurate diagnosis of the compound faults can be of significant help to practical maintenance and management. However, most existing intelligent diagnostic methods typically require abundant data for training, which is often difficult to collect for compound faults. In this paper, a novel method called impact feature-based decoupling capsule network (IFDCN) is proposed for diagnosing compound faults with incomplete datasets. In this model, an improved Laplace wavelet kernel capsule neural network is proposed to extract and enhance the impact features of vibration signal. A decoupling classifier is designed to decouple the compound faults in the diagnostic process so as to identify the sub-faults contained in the compound faults. In using this proposed model for incomplete datasets, the compound fault data is not trained and is not labeled. Through training on single-fault data, the proposed model is capable of classifying and decoupling the fault types. The feature extraction capability of the network is visualized by heat maps, and the physical significance of feature extraction is explained by deep learning network. The effectiveness of IFDCN is verified through different experimental of gear and bearing and the experiment results indicate that the proposed model has higher identifying precision and can accurately decouple the compound faults without compound fault samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助HU采纳,获得10
刚刚
Nana发布了新的文献求助10
刚刚
2秒前
2秒前
风为裳完成签到,获得积分10
2秒前
跳跃凡桃发布了新的文献求助10
2秒前
Gloyxtg发布了新的文献求助10
2秒前
3秒前
3秒前
Mlwwq发布了新的文献求助10
3秒前
小张医生发布了新的文献求助10
3秒前
4秒前
科研通AI5应助甜甜采纳,获得10
4秒前
6秒前
忍冬完成签到,获得积分10
7秒前
tigger发布了新的文献求助10
7秒前
小杨完成签到,获得积分10
7秒前
大雷完成签到,获得积分10
7秒前
9秒前
上岸的咸鱼完成签到,获得积分20
9秒前
科研通AI5应助大肥羊采纳,获得30
9秒前
uniphoton发布了新的文献求助10
9秒前
9秒前
葱花香菜发布了新的文献求助10
9秒前
舒适小馒头完成签到,获得积分10
10秒前
yanzu应助lzz采纳,获得10
10秒前
10秒前
大明完成签到,获得积分10
10秒前
10秒前
Hello应助阿杜阿杜采纳,获得10
11秒前
忧郁鸡翅完成签到,获得积分10
11秒前
英姑应助安静凡旋采纳,获得10
11秒前
杰杰小杰完成签到,获得积分10
11秒前
完美世界应助小杨采纳,获得10
11秒前
HU完成签到,获得积分20
12秒前
12秒前
12秒前
华仔应助欣慰的血茗采纳,获得10
12秒前
上官若男应助小于采纳,获得10
12秒前
Orange应助另一种感觉采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3564116
求助须知:如何正确求助?哪些是违规求助? 3137325
关于积分的说明 9421827
捐赠科研通 2837701
什么是DOI,文献DOI怎么找? 1559976
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717246