Deep Reinforcement Learning for Adaptive Cyber Defense in Network Security

强化学习 计算机科学 计算机安全 网络安全 人工智能
作者
Atheer Alaa Hammad,Saadaldeen Rashid Ahmed,Mohammad K. Abdul-Hussein,Mohammed R. Ahmed,Duaa A. Majeed,Sameer Algburi
标识
DOI:10.1145/3660853.3660930
摘要

In the labyrinthine world of cybersecurity, the ever-evolving specter of cyber-attacks offers an inevitable challenge to the fortifications of protection measures. Past investigations have underlined the exigency for adaptive and aggressive strategies in the arena of cyber defense, with a conspicuous lacuna in leveraging advanced machine learning paradigms for real-time threat discernment and neutralization. In response to this gap, our investigation strives to probe the depths of deep reinforcement learning (DRL) efficacy in the domain of adaptive cyber protection. Imbibing the essence of cutting-edge DRL techniques such as Deep Q-Networks (DQN), Proximal Policy Optimization (PPO), and Twin Delayed Deep Deterministic Policy Gradient (TD3), we fashioned a revolutionary schema tailored towards parsing and fighting cyber threats in real-time. Our expedition traversed the terra incognita of a comprehensive dataset, teeming with varied cyber threat scenarios covering the gamut from malware invasions to phishing machinations, intrusion intrusions, and adversarial assaults, to incubate and examine the performance of our DRL models. Through a crucible of extensive experimentation, we unfurl promising ensigns, with our algorithms evincing a lofty accuracy and effectiveness quotient in the classification and abatement of cyber threats. This research purports to accelerate the vanguard of cyber defense by exposing the latent potential of DRL in sculpting adaptive and robust bulwarks against the unrelenting tide of developing cyber threats.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷傲的薯片完成签到 ,获得积分10
刚刚
Jasper应助karL采纳,获得10
刚刚
mirrovo发布了新的文献求助100
刚刚
刚刚
英姑应助无私的紫文采纳,获得10
刚刚
大个应助rixinsu采纳,获得10
3秒前
恣意发布了新的文献求助10
4秒前
4秒前
星辰大海应助失眠的寄翠采纳,获得10
4秒前
4秒前
wanci应助zzx采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
慈祥的傲安完成签到,获得积分20
5秒前
6秒前
树上香蕉果完成签到,获得积分10
7秒前
午夜煎饼完成签到 ,获得积分10
7秒前
7秒前
小马完成签到,获得积分10
8秒前
fei应助jssssssss采纳,获得30
8秒前
依恋发布了新的文献求助10
8秒前
8秒前
NIBABA完成签到,获得积分10
9秒前
微笑的觅露完成签到 ,获得积分10
9秒前
9秒前
陈槊诸发布了新的文献求助10
9秒前
虚拟的以南完成签到,获得积分10
10秒前
Daty发布了新的文献求助10
10秒前
10秒前
李健的小迷弟应助John_Xiong采纳,获得10
10秒前
张朝欣完成签到,获得积分10
10秒前
科研通AI6应助huangyi采纳,获得10
11秒前
11秒前
茗泠发布了新的文献求助30
11秒前
文献菜鸡发布了新的文献求助10
11秒前
12秒前
cxxxx应助草木采纳,获得10
12秒前
Denny完成签到,获得积分10
12秒前
JPEI完成签到,获得积分10
12秒前
Liana_Liu发布了新的文献求助10
12秒前
恣意完成签到,获得积分20
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618656
求助须知:如何正确求助?哪些是违规求助? 4703567
关于积分的说明 14922777
捐赠科研通 4758019
什么是DOI,文献DOI怎么找? 2550151
邀请新用户注册赠送积分活动 1512998
关于科研通互助平台的介绍 1474379