Local Climate Zone Classification via Semi-Supervised Multimodal Multiscale Transformer

计算机科学 遥感 人工智能 模式识别(心理学) 地质学
作者
Huiping Lin,Hongmiao Wang,Junjun Yin,Jian Yang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-17 被引量:1
标识
DOI:10.1109/tgrs.2024.3399048
摘要

Local climate zone (LCZ) classification plays a critical role in urban environment research and has attracted extensive attention from many researchers. However, the potential of deep learning-based approaches is not yet fully explored in this field, even though neural networks continue to push the frontier for various applications. In this paper, we propose a novel multimodal multiscale Transformer network for LCZ classification by introducing multiscale patch embedding and multimodal fusion learning in Transformer architecture. The proposed multiscale patch embedding effectively captures hierarchical interrelationships of image contextual neighborhoods, and automatically learns discriminative features. And the proposed multimodal fusion learning enables the network to naturally fuse multispectral and synthetic aperture radar (SAR) data under the guidance of attention mechanism. To further improve classification accuracy, we impose semi-supervised learning to mine unlabeled image data information. Both labeled and pseudo-labeled data jointly drive our network updates. Experiments conducted on the So2Sat LCZ42, CHN15-LCZ and SouthKorea6-LCZ benchmark datasets demonstrate that our proposed approach outperforms other existing methods significantly and achieves state-of-the-art performance. In the generated LCZ maps, urban and natural classes are well distinguished, the urban structure with waters or mountains is well preserved. Finally, we also discuss the impact of the sample receptive field and sample heterogeneity on LCZ classification performance, which provides a new idea for future studies of LCZ classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨青月完成签到,获得积分10
刚刚
刚刚
1秒前
科研通AI5应助辰小呀采纳,获得10
3秒前
4秒前
可爱的函函应助Nn采纳,获得20
4秒前
4秒前
5秒前
生生完成签到 ,获得积分10
5秒前
Sevendesu应助天地不语采纳,获得10
5秒前
isabellae完成签到,获得积分10
6秒前
範範完成签到,获得积分10
7秒前
7秒前
野猪完成签到,获得积分10
7秒前
共享精神应助优雅的依瑶采纳,获得10
8秒前
8秒前
花痴的溪灵完成签到,获得积分20
8秒前
都是发布了新的文献求助10
8秒前
isabellae发布了新的文献求助100
8秒前
愉快的哈密瓜完成签到,获得积分10
9秒前
我嘻嘻发布了新的文献求助10
9秒前
爱睡觉发布了新的文献求助10
9秒前
9秒前
积极的中蓝完成签到,获得积分10
10秒前
吴效发布了新的文献求助10
10秒前
李姝慧完成签到,获得积分10
10秒前
哎呦呦完成签到,获得积分10
13秒前
我是老大应助硕shuo采纳,获得10
13秒前
江什么明发布了新的文献求助50
13秒前
吴吧啦发布了新的文献求助10
13秒前
在水一方应助腼腆的乐珍采纳,获得10
15秒前
15秒前
安安发布了新的文献求助10
15秒前
十三完成签到,获得积分10
15秒前
Jasper应助我嘻嘻采纳,获得10
16秒前
BR完成签到,获得积分10
16秒前
完美世界应助xxiao采纳,获得10
16秒前
星辰大海应助光亮灯泡采纳,获得10
18秒前
18秒前
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553880
求助须知:如何正确求助?哪些是违规求助? 3129652
关于积分的说明 9383794
捐赠科研通 2828818
什么是DOI,文献DOI怎么找? 1555222
邀请新用户注册赠送积分活动 725923
科研通“疑难数据库(出版商)”最低求助积分说明 715331