Scheduling of Container Transportation Vehicles in Surface Coal Mines Based on the GA–GWO Hybrid Algorithm

遗传算法 渡线 容器(类型理论) 调度(生产过程) 煤矿开采 营业成本 计算机科学 算法 数学优化 工程类 数学 废物管理 机械工程 人工智能
作者
Binwen Hu,Zonghui Xiong,Aihong Sun,Yiping Yuan
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:14 (10): 3986-3986 被引量:3
标识
DOI:10.3390/app14103986
摘要

The coal loading operation of the coal preparation plant of an open pit coal mine causes chaos in coal mine vehicle scheduling due to the unreasonable arrival times of outgoing and container transportation vehicles. To further reduce the length of time that vehicle transportation equipment waits for each other and to reduce the total cost of container transportation, the optimisation model of container transportation vehicle scheduling in an open pit coal mine is constructed to minimise the minimum sum of the shortest time of container reversal and the lowest cost of container transportation. To accurately measure the total cost of container backward transportation, waiting time and unit waiting time cost parameters are introduced, and the total cost of container transportation is measured using the transportation cost and the waiting time cost transformation method. An improved grey wolf algorithm is proposed to speed up the convergence of the algorithm and improve the quality of the solution. When employing the genetic algorithm (GA) and grey wolf optimisation algorithm (GWO) for optimising the scheduling of container transport vehicles in coal mines, it is noted that while the GA can achieve the global optimum, its convergence speed is relatively slow. Conversely, the GWO converges more quickly, but it tends to be trapped in local optima. To accelerate the convergence speed of the algorithm and improve the solution quality, a hybrid GA−GWO algorithm is proposed, which introduces three genetic operations of selection, crossover, and mutation of GA into the GWO algorithm to prevent the algorithm from falling into the local optimum due to the fall; at the same time, it introduces hunting and attacking operations into the elite retention strategy of GA, which improves the stability of the algorithm’s global convergence. Analysis indicates that, compared to SA, GWO, and GA, the hybrid algorithm enhances optimisation speed by 43.1%, 46.2%, and 43.7%, increases optimisation accuracy by 4.12%, 6.1%, and 3.2%, respectively, and reduces the total container reversal time by 35.46, 22, and 31 h. The total cost of container transportation is reduced by 2437 RMB, 3512 RMB, and 1334 RMB, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
克劳克伊发布了新的文献求助10
1秒前
Liang完成签到 ,获得积分10
1秒前
科研木头人完成签到 ,获得积分10
2秒前
wangrblzu应助努力做科研采纳,获得10
2秒前
ZZzz完成签到,获得积分10
3秒前
3秒前
3秒前
搜集达人应助env采纳,获得10
3秒前
3秒前
木头人重新开启了牛牛文献应助
4秒前
4秒前
5秒前
快点毕业完成签到,获得积分20
5秒前
5秒前
6秒前
zzz发布了新的文献求助10
6秒前
7秒前
wardell发布了新的文献求助10
7秒前
7秒前
艳阳天发布了新的文献求助10
8秒前
8秒前
9秒前
西红柿完成签到,获得积分0
9秒前
科研通AI5应助Lina采纳,获得10
10秒前
11秒前
蟹蟹发布了新的文献求助10
11秒前
Ice_zhao完成签到,获得积分10
11秒前
小北笙er发布了新的文献求助10
11秒前
王陈龙发布了新的文献求助10
12秒前
轻松的澜完成签到,获得积分20
12秒前
13秒前
14秒前
14秒前
万能图书馆应助小苹果采纳,获得10
16秒前
17秒前
17秒前
AgentCooper发布了新的文献求助10
17秒前
香蕉觅云应助科研通管家采纳,获得30
18秒前
小蘑菇应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3769147
求助须知:如何正确求助?哪些是违规求助? 3314193
关于积分的说明 10171062
捐赠科研通 3029255
什么是DOI,文献DOI怎么找? 1662296
邀请新用户注册赠送积分活动 794827
科研通“疑难数据库(出版商)”最低求助积分说明 756421