下调和上调
针灸科
医学
炎症体
冲程(发动机)
信号转导
小桶
炎症
缺血性中风
生物信息学
药理学
内科学
缺血
基因表达
生物
病理
基因
细胞生物学
替代医学
工程类
转录组
机械工程
生物化学
作者
Dan Zhou,Lanfang Zhang,Liwei Mao,Jingyu Cao,Jianbao Gao
摘要
Objective. To evaluate the effect of acupuncture on an animal model of ischemic stroke with central poststroke pain (CPSP) through Sirtuin 1 (SIRT1)/NOD-like receptor thermal protein domain associated protein 3 (NLRP3)/interleukin-18 (IL-18) signaling pathway. Methods. Data mining was performed with R package “edgeR,” “limma,” “pathview,” etc., from NCBI Gene Expression Omnibus (GEO) database. Sprague Dawley (SD) rats were divided into 4 groups: sham operation group (Sham group, n = 5), poststroke central pain group (CPSP group, n = 5), poststroke central pain + acupuncture group (AP group, n = 5), central pain after stroke + acupuncture + SIRT1 inhibitor EX527 group (EX527 group, n = 5). Pain behavior testing was performed to determine the mechanical withdrawal threshold (MWT). Quantitative real-time PCR (qRT-PCR) was performed to verify the data mining results from the GEO database. Results. The KEGG key pathway map was created using the R package “pathview” package, demonstrating that the expression levels of NLRP3’s downstream inflammatory factors IL-18 were downregulated in both of siSIRT1 group compared to the control group and the NLRP3 reconstituted group compared to NLRP3 KO group. QRT-PCR results on animal models of CPSP ischemic stroke showed that the expression levels of SIRT1 were downregulated, the activation of the NLRP3 inflammasome was upregulated, and the expression levels of IL-18 were upregulated in the brain tissues of the surrounding area of the injury. As the pain threshold of CPSP rats was increased, the expression level of S1RT1 was upregulated, and the activation of NLRP3 inflammasome was downregulated. The expression level of IL-18 was downregulated after acupuncture treatment. Conclusion. Acupuncture may inhibit CPSP in an animal model of ischemic stroke by upregulating SIRT1 expression levels, inhibition of the activation of the inflammasome, and downregulating IL-18 expression levels.
科研通智能强力驱动
Strongly Powered by AbleSci AI