Effect of TeO2 sintering aid on the microstructure and electrical properties of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte

烧结 材料科学 电解质 晶界 共晶体系 离子电导率 微观结构 相对密度 陶瓷 电导率 相(物质) 化学工程 复合材料 化学 电极 有机化学 物理化学 工程类
作者
Xiangchao Zhao,Yuansong Luo,Xiujian Zhao
出处
期刊:Journal of Alloys and Compounds [Elsevier BV]
卷期号:927: 167019-167019 被引量:17
标识
DOI:10.1016/j.jallcom.2022.167019
摘要

NASICON-type solid electrolyte Li1.3Al0.3Ti1.7(PO4)3 (LATP) has become an excellent substitute for organic liquid electrolytes due to its high ionic conductivity and exceptional air stability. However, its application is limited by its poor sintering characteristics and high grain boundary resistance. In this study, TeO2 was introduced into LATP as a sintering aid to promote its sintering, and its properties were measured by XRD, SEM, XPS, EIS and dilatometry. The results show that the addition of TeO2 can form eutectic liquid phase in LATP ceramic pellets during sintering, thus effectively promoting particle sintering. Not only the grain size was greatly increased, but also grain boundary and pore defects were reduced. With the help of TeO2, the performance of LATP is greatly improved when sintered at only 750 °C, the relative density and total ionic conductivity reached 90.64% and 0.207 mS/cm, respectively. The highest total ionic conductivity of 0.279 mS/cm and the highest relative density of 93.81% were obtained when sintered at 800 ℃ and 950 ℃, respectively. However, due to the volatilization of Li and Te at high temperature, the relative density and total ionic conductivity of LATP with TeO2 added sintered at high temperature have only a small increase compared to that without addition. In conclusion, this study provides a feasible scheme for improving LATP performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wys完成签到 ,获得积分10
1秒前
啊鲤完成签到,获得积分10
1秒前
宋一c完成签到,获得积分20
1秒前
脑洞疼应助wenlin采纳,获得10
2秒前
机灵的静枫完成签到,获得积分10
2秒前
荔枝发布了新的文献求助10
3秒前
慢慢发布了新的文献求助10
4秒前
mmd完成签到,获得积分10
5秒前
5秒前
轻微完成签到 ,获得积分10
6秒前
6秒前
上岸上岸上岸完成签到,获得积分20
6秒前
7秒前
7秒前
8秒前
8秒前
晶彩完成签到,获得积分10
9秒前
10秒前
不爱看发布了新的文献求助10
10秒前
ylwu2018完成签到,获得积分10
11秒前
劲秉应助友好的天奇采纳,获得20
12秒前
vation发布了新的文献求助10
12秒前
12秒前
小白发布了新的文献求助10
13秒前
13秒前
潘2333完成签到,获得积分20
13秒前
YK完成签到,获得积分10
14秒前
14秒前
乐乐应助可耐的善斓采纳,获得10
14秒前
15秒前
gddaebh完成签到,获得积分10
15秒前
嘉嘉发布了新的文献求助10
15秒前
15秒前
12111完成签到,获得积分10
16秒前
17秒前
雪山飞发布了新的文献求助10
17秒前
于生有你发布了新的文献求助10
17秒前
wenlin发布了新的文献求助10
18秒前
852应助wxr采纳,获得10
18秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Munson, Young, and Okiishi’s Fundamentals of Fluid Mechanics 9 edition problem solution manual (metric) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3748536
求助须知:如何正确求助?哪些是违规求助? 3291591
关于积分的说明 10073642
捐赠科研通 3007395
什么是DOI,文献DOI怎么找? 1651600
邀请新用户注册赠送积分活动 786523
科研通“疑难数据库(出版商)”最低求助积分说明 751765