Diagnostic accuracy of multiparametric ultrasound for peripheral nerve schwannoma

医学 神经鞘瘤 放射科 置信区间 超声波 接收机工作特性 内科学
作者
Yu Yuan,Jin-Mei Gao,Guangyi Xiong,Lin Guo
出处
期刊:Acta Radiologica [SAGE]
卷期号:64 (4): 1608-1614 被引量:7
标识
DOI:10.1177/02841851221125109
摘要

Background Ultrasound (US) diagnostic techniques have the advantages of low cost, convenient operation, and high availability. Purpose To explore the diagnostic accuracy of multiparametric US in evaluating signs of peripheral schwannoma. Material and Methods This retrospective case-control study included patients with soft-tissue masses on the limbs (divided into the schwannoma and non-schwannoma groups) between January 2017 and November 2020. US features were compared between the two groups, and receiver operating characteristics analysis was used to evaluate the diagnostic efficacy of these features. Results A total of 165 patients were included in this study; of them, 63 (38.2%) were diagnosed with schwannoma. Regular morphology (95.2% vs. 39.2%), cystic degeneration (71.4% vs. 27.5%), target sign on elastography (82.5% vs. 0), and polar blood supply sign (87.3% vs. 14.7%) were more common in schwannomas than in non-schwannoma lesions (all P < 0.001). Combining the four signs for diagnosis of schwannomas, the sensitivity, specificity, and accuracy were 95.24%, 96.08%, and 95.76%, respectively, with an area under the curve (AUC) of 0.987 (95% confidence interval = 0.955–0.998). Entering and exiting nerve sign was observed in 87.3% of schwannomas and in 3.0% of non-schwannoma lesions ( P < 0.001), while split-fat sign was similar between the two groups (9.5% vs. 2.0%; P = 0.068). Conclusion Polar blood supply sign and target sign on elastography are specific US signs in peripheral schwannomas. The combination of two-dimensional imaging, color flow imaging, and elastography can achieve an excellent diagnostic accuracy in schwannomas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黄油可颂完成签到 ,获得积分10
刚刚
YYL完成签到,获得积分10
刚刚
liuyue完成签到,获得积分10
1秒前
李新颖完成签到 ,获得积分10
1秒前
dongkaimi完成签到,获得积分10
2秒前
沈醒会完成签到 ,获得积分10
2秒前
贝star完成签到,获得积分10
2秒前
lilac完成签到,获得积分10
3秒前
隐形曼青应助纯真怜梦采纳,获得10
3秒前
刘齐完成签到,获得积分10
4秒前
青鱼完成签到,获得积分10
5秒前
七子完成签到,获得积分10
6秒前
胖小羊发布了新的文献求助10
6秒前
Bravo完成签到 ,获得积分20
6秒前
飘逸鸽子完成签到,获得积分10
6秒前
yu完成签到,获得积分10
6秒前
6秒前
zzx396完成签到,获得积分0
8秒前
ewww完成签到 ,获得积分10
8秒前
大蘑菇炒小蘑菇完成签到,获得积分10
8秒前
天天快乐应助烟王之王采纳,获得10
9秒前
i_jueloa完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
xmy完成签到,获得积分10
9秒前
鲤鱼翼完成签到 ,获得积分10
11秒前
leo完成签到,获得积分10
11秒前
bigpluto完成签到,获得积分0
11秒前
ding应助百事可乐采纳,获得10
11秒前
Muhi完成签到,获得积分10
11秒前
墨痕mohen完成签到,获得积分0
12秒前
文献狂人完成签到,获得积分10
12秒前
12秒前
我是老大应助科研通管家采纳,获得10
13秒前
13秒前
充电宝应助科研通管家采纳,获得10
13秒前
SwampMan完成签到,获得积分10
14秒前
李健应助无解采纳,获得10
14秒前
jimingxiang完成签到,获得积分10
14秒前
火星上的铃铛完成签到,获得积分10
15秒前
石敢当完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5470705
求助须知:如何正确求助?哪些是违规求助? 4573477
关于积分的说明 14338817
捐赠科研通 4500565
什么是DOI,文献DOI怎么找? 2465888
邀请新用户注册赠送积分活动 1454143
关于科研通互助平台的介绍 1428852