Development of artificial intelligence model for supporting implant drilling protocol decision making

协议(科学) 锥束ct 接收机工作特性 计算机科学 人工智能 植入 计算机断层摄影术 生物医学工程 医学 机器学习 放射科 外科 病理 替代医学
作者
Takahiko Sakai,Hefei Li,Tatsuki Shimada,Suzune Kita,Maho Iida,Chunwoo Lee,Tamaki Nakano,Satoshi Yamaguchi,Satoshi Imazato
出处
期刊:Journal of prosthodontic research [Japan Prosthodontic Society]
卷期号:67 (3): 360-365 被引量:22
标识
DOI:10.2186/jpr.jpr_d_22_00053
摘要

Purpose This study aimed to develop an artificial intelligence (AI) model to support the determination of an appropriate implant drilling protocol using cone-beam computed tomography (CBCT) images.Methods Anonymized CBCT images were obtained from 60 patients. For each case, after implant placement, images of the bone regions at the implant site were extracted from 20 slices of CBCT images. Based on the actual drilling protocol, the images were classified into three categories: protocols A, B, and C. A total of 1,200 images were divided into training and validation datasets (n = 960, 80%) and a test dataset (n = 240, 20%). Another 240 images (80 images for each type) were extracted from the 60 cases as test data. An AI model based on LeNet-5 was developed using these data sets. The accuracy, sensitivity, precision, F-value, area under the curve (AUC) value, and receiver operating curve were calculated.Results The accuracy of the trained model is 93.8%. The sensitivity results for drilling protocols A, B, and C were 97.5%, 95.0%, and 85.0%, respectively, while those for protocols A, B, and C were 86.7%, 92.7%, and 100%, respectively, and the F values for protocols A, B, and C were 91.8%, 93.8%, and 91.9%, respectively. The AUC values for protocols A, B, and C are 98.6%, 98.6%, and 99.4%, respectively.Conclusions The AI model established in this study was effective in predicting drilling protocols from CBCT images before surgery, suggesting the possibility of developing a decision-making support system to promote primary stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
orixero应助跳跃的静曼采纳,获得10
1秒前
诺奖离我十万八千里完成签到,获得积分10
1秒前
高高发布了新的文献求助10
1秒前
5秒前
深情安青应助机智的青槐采纳,获得10
5秒前
茶茶发布了新的文献求助10
5秒前
szl发布了新的文献求助10
5秒前
Lucas应助京阿尼采纳,获得10
6秒前
甜甜晓露完成签到,获得积分10
7秒前
科研通AI5应助qifa采纳,获得10
7秒前
shrike完成签到 ,获得积分10
7秒前
有魅力白开水完成签到,获得积分20
7秒前
小蒲完成签到 ,获得积分10
8秒前
万能图书馆应助大力鱼采纳,获得10
8秒前
9秒前
Rrr发布了新的文献求助10
10秒前
跳跃的静曼完成签到,获得积分10
10秒前
丰富的不惜完成签到,获得积分10
11秒前
12秒前
wfc完成签到,获得积分10
12秒前
浅梨涡完成签到 ,获得积分10
14秒前
JamesPei应助椰子熟了耶采纳,获得20
15秒前
hanyang965发布了新的文献求助10
15秒前
orixero应助喵呜采纳,获得10
15秒前
15秒前
15秒前
16秒前
en发布了新的文献求助10
16秒前
17秒前
白宝宝北北白应助氕氘氚采纳,获得10
17秒前
18秒前
进取拼搏完成签到,获得积分10
18秒前
hehsk完成签到,获得积分10
18秒前
无限鞅完成签到,获得积分20
18秒前
19秒前
DY完成签到 ,获得积分10
20秒前
郑仕完成签到,获得积分10
20秒前
20秒前
进取拼搏发布了新的文献求助10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808