Development of artificial intelligence model for supporting implant drilling protocol decision making

协议(科学) 锥束ct 接收机工作特性 计算机科学 人工智能 植入 计算机断层摄影术 生物医学工程 医学 机器学习 放射科 外科 病理 替代医学
作者
Takahiko Sakai,Hefei Li,Tatsuki Shimada,Suzune Kita,Maho Iida,Chunwoo Lee,Tamaki Nakano,Satoshi Yamaguchi,Satoshi Imazato
出处
期刊:Journal of prosthodontic research [Japan Prosthodontic Society]
卷期号:67 (3): 360-365 被引量:22
标识
DOI:10.2186/jpr.jpr_d_22_00053
摘要

Purpose This study aimed to develop an artificial intelligence (AI) model to support the determination of an appropriate implant drilling protocol using cone-beam computed tomography (CBCT) images.Methods Anonymized CBCT images were obtained from 60 patients. For each case, after implant placement, images of the bone regions at the implant site were extracted from 20 slices of CBCT images. Based on the actual drilling protocol, the images were classified into three categories: protocols A, B, and C. A total of 1,200 images were divided into training and validation datasets (n = 960, 80%) and a test dataset (n = 240, 20%). Another 240 images (80 images for each type) were extracted from the 60 cases as test data. An AI model based on LeNet-5 was developed using these data sets. The accuracy, sensitivity, precision, F-value, area under the curve (AUC) value, and receiver operating curve were calculated.Results The accuracy of the trained model is 93.8%. The sensitivity results for drilling protocols A, B, and C were 97.5%, 95.0%, and 85.0%, respectively, while those for protocols A, B, and C were 86.7%, 92.7%, and 100%, respectively, and the F values for protocols A, B, and C were 91.8%, 93.8%, and 91.9%, respectively. The AUC values for protocols A, B, and C are 98.6%, 98.6%, and 99.4%, respectively.Conclusions The AI model established in this study was effective in predicting drilling protocols from CBCT images before surgery, suggesting the possibility of developing a decision-making support system to promote primary stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fjh发布了新的文献求助10
2秒前
Jasper应助wyj采纳,获得10
2秒前
xiaowuge完成签到 ,获得积分10
2秒前
lvlv发布了新的文献求助10
2秒前
七七完成签到,获得积分10
3秒前
时光倒流的鱼完成签到,获得积分10
4秒前
可爱的函函应助ann采纳,获得30
4秒前
方悦发布了新的文献求助10
4秒前
john发布了新的文献求助10
6秒前
苗苗完成签到 ,获得积分10
6秒前
普通人发布了新的文献求助10
7秒前
7秒前
9秒前
思源应助fjh采纳,获得10
10秒前
Jasper应助Dore采纳,获得10
11秒前
12秒前
13秒前
Zooey旎旎发布了新的文献求助10
15秒前
john完成签到,获得积分10
15秒前
小墨完成签到,获得积分10
16秒前
REN关闭了REN文献求助
18秒前
Orange应助高大的机器猫采纳,获得10
20秒前
20秒前
11完成签到,获得积分10
20秒前
21秒前
我是老大应助加速度采纳,获得30
23秒前
24秒前
25秒前
25秒前
chongse完成签到,获得积分10
26秒前
东方秦兰完成签到,获得积分10
27秒前
小二郎应助普通人采纳,获得10
27秒前
wanci应助哆啦猫采纳,获得10
28秒前
30秒前
东方秦兰发布了新的文献求助10
30秒前
狂野忆文完成签到,获得积分10
31秒前
32秒前
再找一篇就好哈完成签到,获得积分10
34秒前
orange完成签到,获得积分10
34秒前
最重中之重完成签到,获得积分10
35秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135055
求助须知:如何正确求助?哪些是违规求助? 2786055
关于积分的说明 7774839
捐赠科研通 2441865
什么是DOI,文献DOI怎么找? 1298217
科研通“疑难数据库(出版商)”最低求助积分说明 625108
版权声明 600825