Development of artificial intelligence model for supporting implant drilling protocol decision making

协议(科学) 锥束ct 接收机工作特性 计算机科学 人工智能 植入 计算机断层摄影术 生物医学工程 医学 机器学习 放射科 外科 病理 替代医学
作者
Takahiko Sakai,Hefei Li,Tatsuki Shimada,Suzune Kita,Maho Iida,Chunwoo Lee,Tamaki Nakano,Satoshi Yamaguchi,Satoshi Imazato
出处
期刊:Journal of prosthodontic research [Japan Prosthodontic Society]
卷期号:67 (3): 360-365 被引量:22
标识
DOI:10.2186/jpr.jpr_d_22_00053
摘要

Purpose This study aimed to develop an artificial intelligence (AI) model to support the determination of an appropriate implant drilling protocol using cone-beam computed tomography (CBCT) images.Methods Anonymized CBCT images were obtained from 60 patients. For each case, after implant placement, images of the bone regions at the implant site were extracted from 20 slices of CBCT images. Based on the actual drilling protocol, the images were classified into three categories: protocols A, B, and C. A total of 1,200 images were divided into training and validation datasets (n = 960, 80%) and a test dataset (n = 240, 20%). Another 240 images (80 images for each type) were extracted from the 60 cases as test data. An AI model based on LeNet-5 was developed using these data sets. The accuracy, sensitivity, precision, F-value, area under the curve (AUC) value, and receiver operating curve were calculated.Results The accuracy of the trained model is 93.8%. The sensitivity results for drilling protocols A, B, and C were 97.5%, 95.0%, and 85.0%, respectively, while those for protocols A, B, and C were 86.7%, 92.7%, and 100%, respectively, and the F values for protocols A, B, and C were 91.8%, 93.8%, and 91.9%, respectively. The AUC values for protocols A, B, and C are 98.6%, 98.6%, and 99.4%, respectively.Conclusions The AI model established in this study was effective in predicting drilling protocols from CBCT images before surgery, suggesting the possibility of developing a decision-making support system to promote primary stability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
荔枝多酚发布了新的文献求助10
刚刚
007号选手发布了新的文献求助10
刚刚
小白发布了新的文献求助10
1秒前
融小葵发布了新的文献求助10
2秒前
2秒前
2秒前
小蘑菇应助小李找文献采纳,获得10
2秒前
2秒前
严兴明完成签到,获得积分10
2秒前
3秒前
平常的元蝶完成签到 ,获得积分10
4秒前
美满嘉熙完成签到,获得积分10
5秒前
端庄的毛豆完成签到,获得积分10
5秒前
遨游的人发布了新的文献求助10
5秒前
懵懂的晓曼完成签到,获得积分10
7秒前
灿灿完成签到 ,获得积分10
7秒前
8秒前
虾滑发布了新的文献求助20
8秒前
皮鲂完成签到,获得积分10
8秒前
小易发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
10秒前
万能图书馆应助小红采纳,获得10
10秒前
11秒前
11秒前
12秒前
舒心安柏完成签到 ,获得积分10
12秒前
12秒前
rainbow完成签到,获得积分10
12秒前
13秒前
13秒前
小南发布了新的文献求助10
13秒前
13秒前
13秒前
粒粒糖完成签到,获得积分10
13秒前
我是老大应助小易采纳,获得10
13秒前
14秒前
14秒前
lzz发布了新的文献求助10
14秒前
zz完成签到,获得积分20
15秒前
Cisplatin完成签到,获得积分20
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Treatise on Geochemistry 1500
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5514286
求助须知:如何正确求助?哪些是违规求助? 4608193
关于积分的说明 14508898
捐赠科研通 4544028
什么是DOI,文献DOI怎么找? 2489864
邀请新用户注册赠送积分活动 1471799
关于科研通互助平台的介绍 1443710