清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Development of artificial intelligence model for supporting implant drilling protocol decision making

协议(科学) 锥束ct 接收机工作特性 计算机科学 人工智能 植入 计算机断层摄影术 生物医学工程 医学 机器学习 放射科 外科 病理 替代医学
作者
Takahiko Sakai,Hefei Li,Tatsuki Shimada,Suzune Kita,Maho Iida,Chunwoo Lee,Tamaki Nakano,Satoshi Yamaguchi,Satoshi Imazato
出处
期刊:Journal of prosthodontic research [Japan Prosthodontic Society]
卷期号:67 (3): 360-365 被引量:22
标识
DOI:10.2186/jpr.jpr_d_22_00053
摘要

Purpose This study aimed to develop an artificial intelligence (AI) model to support the determination of an appropriate implant drilling protocol using cone-beam computed tomography (CBCT) images.Methods Anonymized CBCT images were obtained from 60 patients. For each case, after implant placement, images of the bone regions at the implant site were extracted from 20 slices of CBCT images. Based on the actual drilling protocol, the images were classified into three categories: protocols A, B, and C. A total of 1,200 images were divided into training and validation datasets (n = 960, 80%) and a test dataset (n = 240, 20%). Another 240 images (80 images for each type) were extracted from the 60 cases as test data. An AI model based on LeNet-5 was developed using these data sets. The accuracy, sensitivity, precision, F-value, area under the curve (AUC) value, and receiver operating curve were calculated.Results The accuracy of the trained model is 93.8%. The sensitivity results for drilling protocols A, B, and C were 97.5%, 95.0%, and 85.0%, respectively, while those for protocols A, B, and C were 86.7%, 92.7%, and 100%, respectively, and the F values for protocols A, B, and C were 91.8%, 93.8%, and 91.9%, respectively. The AUC values for protocols A, B, and C are 98.6%, 98.6%, and 99.4%, respectively.Conclusions The AI model established in this study was effective in predicting drilling protocols from CBCT images before surgery, suggesting the possibility of developing a decision-making support system to promote primary stability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1分钟前
思源应助甜蜜的丹翠采纳,获得10
1分钟前
li发布了新的文献求助10
1分钟前
搜集达人应助科研通管家采纳,获得30
1分钟前
隐形曼青应助科研通管家采纳,获得20
1分钟前
甜蜜的丹翠完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
cclyfan完成签到,获得积分10
2分钟前
3分钟前
陶醉巧凡完成签到,获得积分10
3分钟前
浮游应助lawang采纳,获得10
4分钟前
浮游应助lawang采纳,获得10
4分钟前
浮游应助lawang采纳,获得10
4分钟前
浮游应助lawang采纳,获得10
4分钟前
浮游应助lawang采纳,获得10
4分钟前
浮游应助lawang采纳,获得10
4分钟前
浮游应助lawang采纳,获得10
4分钟前
浮游应助lawang采纳,获得10
4分钟前
iNk应助lawang采纳,获得10
4分钟前
科研通AI2S应助lawang采纳,获得10
4分钟前
Akim应助lawang采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
5分钟前
饺子猫完成签到,获得积分10
5分钟前
5分钟前
lawang完成签到,获得积分10
6分钟前
两个榴莲完成签到,获得积分0
6分钟前
6分钟前
7分钟前
朱文韬发布了新的文献求助10
7分钟前
朱文韬完成签到,获得积分10
7分钟前
平淡卿完成签到 ,获得积分10
7分钟前
7分钟前
科研通AI6应助科研通管家采纳,获得10
7分钟前
量子星尘发布了新的文献求助10
7分钟前
li发布了新的文献求助10
7分钟前
kasumi完成签到 ,获得积分20
8分钟前
li完成签到,获得积分10
8分钟前
krajicek完成签到,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681786
求助须知:如何正确求助?哪些是违规求助? 5013072
关于积分的说明 15176105
捐赠科研通 4841287
什么是DOI,文献DOI怎么找? 2595077
邀请新用户注册赠送积分活动 1548103
关于科研通互助平台的介绍 1506117