清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Modeling Water Transport in Interlayered Thin-Film Nanocomposite Membranes: Gutter Effect vs Funnel Effect

渗透 纳米复合材料 漏斗 聚酰胺 薄膜复合膜 材料科学 水运 扩散 海水淡化 复合材料 化学工程 结垢 反渗透 环境工程 渗透 化学 水流 工程类 热力学 物理 生物化学
作者
Fei Wang,Zhe Yang,Chuyang Y. Tang
出处
期刊:ACS ES&T engineering [American Chemical Society]
卷期号:2 (11): 2023-2033 被引量:38
标识
DOI:10.1021/acsestengg.2c00133
摘要

Interlayered thin-film nanocomposite (TFNi) membranes have experimentally demonstrated a great potential for achieving major gains in water permeance over conventional thin-film composite membranes, making them promising candidates for many environmental applications. Nevertheless, existing literature often reports contradicting observations on the effectiveness of interlayers. In this study, we implement a three-dimensional solution-diffusion model to analyze a geometry-induced funnel effect and an interlayer-promoted gutter effect. Our simulation results suggest that even an ultrathin interlayer of a few nanometers in thickness could serve as a low-resistance gutter layer, which minimizes the transversal water transport in the less permeable polyamide layer and thereby mitigate the unfavorable funnel effect. The actual available water permeance is bounded by the ideal polyamide-limited upper bound and the substrate-limited lower bound, with the interlayer regulating the competition between the funnel effect and the gutter effect. Water permeance can be potentially improved by an order of magnitude with the interlayer, and this enhancement is more pronounced for thinner polyamide layers, less porous substrates, and more permeable interlayers. We further analyze the role of the interlayer on improving the flux distribution/uniformity over a membrane surface, which has major implications on membrane fouling propensity. Our study establishes a theoretical framework for understanding the fundamental transport mechanisms in TFNi membranes, which provides important guidance on the future development of high-performance desalination membranes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ARESCI完成签到,获得积分10
3秒前
彭于晏应助夏茉弋采纳,获得10
15秒前
22秒前
23秒前
文章多多发布了新的文献求助10
25秒前
所所应助文章多多采纳,获得10
31秒前
LUCKY完成签到 ,获得积分10
1分钟前
情怀应助科研通管家采纳,获得150
1分钟前
1分钟前
超大份雪碧完成签到 ,获得积分10
2分钟前
2分钟前
夏茉弋完成签到,获得积分10
2分钟前
夏茉弋发布了新的文献求助10
2分钟前
ZYP发布了新的文献求助10
3分钟前
久晓完成签到 ,获得积分10
3分钟前
大医仁心完成签到 ,获得积分10
4分钟前
ZYP完成签到,获得积分0
4分钟前
ZYP发布了新的文献求助10
4分钟前
4分钟前
doublenine18发布了新的文献求助30
4分钟前
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
5分钟前
6分钟前
外向的妍完成签到,获得积分10
6分钟前
6分钟前
6分钟前
6分钟前
萝卜猪完成签到,获得积分10
6分钟前
7分钟前
swh发布了新的文献求助10
7分钟前
7分钟前
7分钟前
ZYP发布了新的文献求助10
7分钟前
隐形曼青应助结实的半双采纳,获得10
7分钟前
7分钟前
Johan完成签到 ,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639779
求助须知:如何正确求助?哪些是违规求助? 4750432
关于积分的说明 15007332
捐赠科研通 4797998
什么是DOI,文献DOI怎么找? 2564082
邀请新用户注册赠送积分活动 1522938
关于科研通互助平台的介绍 1482609