Brain Network Analysis: A Review on Multivariate Analytical Methods

多元统计 单变量 计算机科学 多元分析 网络分析 复杂网络 多学科方法 功率图分析 神经影像学 人工智能 图形 网络拓扑 机器学习 数据科学 数据挖掘 理论计算机科学 心理学 神经科学 物理 万维网 社会学 操作系统 量子力学 社会科学
作者
Mohsen Bahrami,Paul J. Laurienti,Heather Shappell,Sean L. Simpson
出处
期刊:Brain connectivity [Mary Ann Liebert]
卷期号:13 (2): 64-79 被引量:11
标识
DOI:10.1089/brain.2022.0007
摘要

Despite the explosive growth of neuroimaging studies aimed at analyzing the brain as a complex system, critical methodological gaps remain to be addressed. Most tools currently used for analyzing network data of the brain are univariate in nature and are based on assumptions borne out of previous techniques not directly related to the big and complex data of the brain. Although graph-based methods have shown great promise, the development of principled multivariate models to address inherent limitations of graph-based methods, such as their dependence on network size and degree distributions, and to allow assessing the effects of multiple phenotypes on the brain and simulating brain networks has largely lagged behind. Although some studies have been made in developing multivariate frameworks to fill this gap, in the absence of a "gold-standard" method or guidelines, choosing the most appropriate method for each study can be another critical challenge for investigators in this multidisciplinary field. Here, we briefly introduce important multivariate methods for brain network analyses in two main categories: data-driven and model-based methods. We discuss whether/how such methods are suited for examining connectivity (edge-level), topology (system-level), or both. This review will aid in choosing an appropriate multivariate method with respect to variables such as network type, number of subjects and brain regions included, and the interest in connectivity, topology, or both. This review is aimed to be accessible to investigators from different backgrounds, with a focus on applications in brain network studies, though the methods may be applicable in other areas too. As the U.S. National Institute of Health notes, the rich biomedical data can greatly improve our knowledge of human health if new analytical tools are developed, and their applications are broadly disseminated. A major challenge in analyzing the brain as a complex system is about developing parsimonious multivariate methods, and particularly choosing the most appropriate one among the existing methods with respect to the study variables in this multidisciplinary field. This study provides a review on the most important multivariate methods to aid in helping the most appropriate ones with respect to the desired variables for each study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
溜溜很优秀完成签到,获得积分10
1秒前
李爱国应助小白采纳,获得10
1秒前
2秒前
tht2233发布了新的文献求助10
3秒前
情怀应助laz采纳,获得10
3秒前
4秒前
6秒前
7秒前
12秒前
TYM发布了新的文献求助10
12秒前
12秒前
zwy109完成签到 ,获得积分10
13秒前
zgl完成签到,获得积分10
13秒前
14秒前
科研通AI6.1应助一二采纳,获得10
15秒前
15秒前
16秒前
17秒前
正能量的涛完成签到 ,获得积分10
19秒前
超级大神发布了新的文献求助10
20秒前
21秒前
小白发布了新的文献求助10
21秒前
郑嘻嘻完成签到,获得积分10
21秒前
VioletRyu完成签到,获得积分10
24秒前
不如吃茶去完成签到,获得积分20
28秒前
hushan53完成签到,获得积分10
28秒前
飞虎完成签到,获得积分10
30秒前
starry南鸢完成签到 ,获得积分10
31秒前
风清扬完成签到,获得积分0
32秒前
Yeeeh完成签到 ,获得积分10
33秒前
桐桐应助刘铠瑜采纳,获得10
36秒前
爱撒娇的西装完成签到,获得积分10
36秒前
38秒前
tuanheqi应助努力的小韩采纳,获得30
41秒前
Jasper应助刘铠瑜采纳,获得10
42秒前
simon发布了新的文献求助10
43秒前
共享精神应助灵长类采纳,获得30
44秒前
超级大神完成签到,获得积分20
46秒前
mayzee完成签到,获得积分10
46秒前
李健的小迷弟应助HM采纳,获得10
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Key Thinkers in Industrial and Organizational Psychology 500
A positive solution of a nonlinear elliptic equation in $\Bbb R^N$ with $G$-symmetry 200
Eine Fährtenschicht im mittelfränkischen Blasensandstein 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5869356
求助须知:如何正确求助?哪些是违规求助? 6451604
关于积分的说明 15660816
捐赠科研通 4985139
什么是DOI,文献DOI怎么找? 2688283
邀请新用户注册赠送积分活动 1630756
关于科研通互助平台的介绍 1588831