Brain Network Analysis: A Review on Multivariate Analytical Methods

多元统计 单变量 计算机科学 多元分析 网络分析 复杂网络 多学科方法 功率图分析 神经影像学 人工智能 图形 网络拓扑 机器学习 数据科学 数据挖掘 理论计算机科学 心理学 神经科学 物理 万维网 社会学 操作系统 量子力学 社会科学
作者
Mohsen Bahrami,Paul J. Laurienti,Heather Shappell,Sean L. Simpson
出处
期刊:Brain connectivity [Mary Ann Liebert]
卷期号:13 (2): 64-79 被引量:11
标识
DOI:10.1089/brain.2022.0007
摘要

Despite the explosive growth of neuroimaging studies aimed at analyzing the brain as a complex system, critical methodological gaps remain to be addressed. Most tools currently used for analyzing network data of the brain are univariate in nature and are based on assumptions borne out of previous techniques not directly related to the big and complex data of the brain. Although graph-based methods have shown great promise, the development of principled multivariate models to address inherent limitations of graph-based methods, such as their dependence on network size and degree distributions, and to allow assessing the effects of multiple phenotypes on the brain and simulating brain networks has largely lagged behind. Although some studies have been made in developing multivariate frameworks to fill this gap, in the absence of a "gold-standard" method or guidelines, choosing the most appropriate method for each study can be another critical challenge for investigators in this multidisciplinary field. Here, we briefly introduce important multivariate methods for brain network analyses in two main categories: data-driven and model-based methods. We discuss whether/how such methods are suited for examining connectivity (edge-level), topology (system-level), or both. This review will aid in choosing an appropriate multivariate method with respect to variables such as network type, number of subjects and brain regions included, and the interest in connectivity, topology, or both. This review is aimed to be accessible to investigators from different backgrounds, with a focus on applications in brain network studies, though the methods may be applicable in other areas too. As the U.S. National Institute of Health notes, the rich biomedical data can greatly improve our knowledge of human health if new analytical tools are developed, and their applications are broadly disseminated. A major challenge in analyzing the brain as a complex system is about developing parsimonious multivariate methods, and particularly choosing the most appropriate one among the existing methods with respect to the study variables in this multidisciplinary field. This study provides a review on the most important multivariate methods to aid in helping the most appropriate ones with respect to the desired variables for each study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
day关闭了day文献求助
刚刚
Ivy完成签到,获得积分10
1秒前
1秒前
bkagyin应助1123采纳,获得10
2秒前
科研通AI6应助zhendezy采纳,获得30
2秒前
2秒前
3秒前
XXXX发布了新的文献求助10
3秒前
大气的代芙完成签到,获得积分10
3秒前
4秒前
斯文败类应助mumufan采纳,获得10
4秒前
谦虚低调接地气完成签到,获得积分10
4秒前
光头大叔完成签到 ,获得积分10
4秒前
paper完成签到 ,获得积分10
5秒前
5秒前
柔弱映梦发布了新的文献求助10
6秒前
田様应助会发光的喷火龙采纳,获得10
6秒前
6秒前
8秒前
昭浣应助科研通管家采纳,获得10
8秒前
斯文败类应助ymh采纳,获得10
8秒前
BowieHuang应助科研通管家采纳,获得10
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
科目三应助科研通管家采纳,获得10
8秒前
Hello应助科研通管家采纳,获得10
8秒前
zhonghang2024应助科研通管家采纳,获得10
9秒前
zhonghang2024应助科研通管家采纳,获得10
9秒前
后来应助科研通管家采纳,获得80
9秒前
共享精神应助科研通管家采纳,获得10
9秒前
北欧海盗完成签到,获得积分10
9秒前
小马甲应助科研通管家采纳,获得10
9秒前
无花果应助科研通管家采纳,获得10
9秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
JamesPei应助科研通管家采纳,获得10
9秒前
小马甲应助科研通管家采纳,获得10
9秒前
昭浣应助科研通管家采纳,获得10
9秒前
紫菀应助科研通管家采纳,获得10
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
大个应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642322
求助须知:如何正确求助?哪些是违规求助? 4758662
关于积分的说明 15017257
捐赠科研通 4800969
什么是DOI,文献DOI怎么找? 2566262
邀请新用户注册赠送积分活动 1524397
关于科研通互助平台的介绍 1483913