Brain Network Analysis: A Review on Multivariate Analytical Methods

多元统计 单变量 计算机科学 多元分析 网络分析 复杂网络 多学科方法 功率图分析 神经影像学 人工智能 图形 网络拓扑 机器学习 数据科学 数据挖掘 理论计算机科学 心理学 神经科学 物理 万维网 社会学 操作系统 量子力学 社会科学
作者
Mohsen Bahrami,Paul J. Laurienti,Heather Shappell,Sean L. Simpson
出处
期刊:Brain connectivity [Mary Ann Liebert, Inc.]
卷期号:13 (2): 64-79 被引量:5
标识
DOI:10.1089/brain.2022.0007
摘要

Despite the explosive growth of neuroimaging studies aimed at analyzing the brain as a complex system, critical methodological gaps remain to be addressed. Most tools currently used for analyzing network data of the brain are univariate in nature and are based on assumptions borne out of previous techniques not directly related to the big and complex data of the brain. Although graph-based methods have shown great promise, the development of principled multivariate models to address inherent limitations of graph-based methods, such as their dependence on network size and degree distributions, and to allow assessing the effects of multiple phenotypes on the brain and simulating brain networks has largely lagged behind. Although some studies have been made in developing multivariate frameworks to fill this gap, in the absence of a "gold-standard" method or guidelines, choosing the most appropriate method for each study can be another critical challenge for investigators in this multidisciplinary field. Here, we briefly introduce important multivariate methods for brain network analyses in two main categories: data-driven and model-based methods. We discuss whether/how such methods are suited for examining connectivity (edge-level), topology (system-level), or both. This review will aid in choosing an appropriate multivariate method with respect to variables such as network type, number of subjects and brain regions included, and the interest in connectivity, topology, or both. This review is aimed to be accessible to investigators from different backgrounds, with a focus on applications in brain network studies, though the methods may be applicable in other areas too. As the U.S. National Institute of Health notes, the rich biomedical data can greatly improve our knowledge of human health if new analytical tools are developed, and their applications are broadly disseminated. A major challenge in analyzing the brain as a complex system is about developing parsimonious multivariate methods, and particularly choosing the most appropriate one among the existing methods with respect to the study variables in this multidisciplinary field. This study provides a review on the most important multivariate methods to aid in helping the most appropriate ones with respect to the desired variables for each study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
开朗依霜发布了新的文献求助10
2秒前
云舒发布了新的文献求助10
4秒前
务实青筠发布了新的文献求助10
5秒前
张浩关注了科研通微信公众号
6秒前
明亮芯发布了新的文献求助10
6秒前
liuxh123发布了新的文献求助10
7秒前
魏立翔完成签到,获得积分10
8秒前
ED应助科研通管家采纳,获得10
10秒前
斯文败类应助科研通管家采纳,获得10
10秒前
桐桐应助科研通管家采纳,获得10
10秒前
搜集达人应助科研通管家采纳,获得10
10秒前
SYLH应助科研通管家采纳,获得10
10秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
隐形曼青应助科研通管家采纳,获得10
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
SYLH应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
深情安青应助科研通管家采纳,获得10
11秒前
12秒前
12秒前
牛诗悦完成签到,获得积分10
12秒前
孙福禄应助爱学习的曼卉采纳,获得10
14秒前
满天星发布了新的文献求助10
14秒前
zhangyu应助务实青筠采纳,获得10
15秒前
活泼万言发布了新的文献求助10
17秒前
米花完成签到 ,获得积分10
18秒前
18秒前
Vaibhav发布了新的文献求助10
18秒前
20秒前
小马甲应助mlll采纳,获得10
21秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993371
求助须知:如何正确求助?哪些是违规求助? 3534027
关于积分的说明 11264545
捐赠科研通 3273794
什么是DOI,文献DOI怎么找? 1806170
邀请新用户注册赠送积分活动 883016
科研通“疑难数据库(出版商)”最低求助积分说明 809652