Brain Network Analysis: A Review on Multivariate Analytical Methods

多元统计 单变量 计算机科学 多元分析 网络分析 复杂网络 多学科方法 功率图分析 神经影像学 人工智能 图形 网络拓扑 机器学习 数据科学 数据挖掘 理论计算机科学 心理学 神经科学 物理 万维网 社会学 操作系统 量子力学 社会科学
作者
Mohsen Bahrami,Paul J. Laurienti,Heather Shappell,Sean L. Simpson
出处
期刊:Brain connectivity [Mary Ann Liebert]
卷期号:13 (2): 64-79 被引量:11
标识
DOI:10.1089/brain.2022.0007
摘要

Despite the explosive growth of neuroimaging studies aimed at analyzing the brain as a complex system, critical methodological gaps remain to be addressed. Most tools currently used for analyzing network data of the brain are univariate in nature and are based on assumptions borne out of previous techniques not directly related to the big and complex data of the brain. Although graph-based methods have shown great promise, the development of principled multivariate models to address inherent limitations of graph-based methods, such as their dependence on network size and degree distributions, and to allow assessing the effects of multiple phenotypes on the brain and simulating brain networks has largely lagged behind. Although some studies have been made in developing multivariate frameworks to fill this gap, in the absence of a "gold-standard" method or guidelines, choosing the most appropriate method for each study can be another critical challenge for investigators in this multidisciplinary field. Here, we briefly introduce important multivariate methods for brain network analyses in two main categories: data-driven and model-based methods. We discuss whether/how such methods are suited for examining connectivity (edge-level), topology (system-level), or both. This review will aid in choosing an appropriate multivariate method with respect to variables such as network type, number of subjects and brain regions included, and the interest in connectivity, topology, or both. This review is aimed to be accessible to investigators from different backgrounds, with a focus on applications in brain network studies, though the methods may be applicable in other areas too. As the U.S. National Institute of Health notes, the rich biomedical data can greatly improve our knowledge of human health if new analytical tools are developed, and their applications are broadly disseminated. A major challenge in analyzing the brain as a complex system is about developing parsimonious multivariate methods, and particularly choosing the most appropriate one among the existing methods with respect to the study variables in this multidisciplinary field. This study provides a review on the most important multivariate methods to aid in helping the most appropriate ones with respect to the desired variables for each study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
天天快乐应助周夭采纳,获得10
1秒前
lcy发布了新的文献求助10
1秒前
渝爱MM发布了新的文献求助10
2秒前
3秒前
NexusExplorer应助Tomasong采纳,获得10
3秒前
搜集达人应助高贵振家采纳,获得10
3秒前
3秒前
chen完成签到,获得积分10
3秒前
Dawn发布了新的文献求助10
4秒前
4秒前
闻元杰发布了新的文献求助10
4秒前
善学以致用应助三岁采纳,获得10
4秒前
汉堡包应助鲤鱼小熊猫采纳,获得10
4秒前
酷波er应助陈嘟嘟采纳,获得10
5秒前
6秒前
lcy完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
zw完成签到,获得积分10
8秒前
123发布了新的文献求助10
8秒前
Gina发布了新的文献求助10
8秒前
脑洞疼应助123采纳,获得10
9秒前
情怀应助qianlu采纳,获得10
9秒前
越野蟹完成签到,获得积分10
10秒前
10秒前
李乐一完成签到,获得积分10
10秒前
咕噜仔发布了新的文献求助10
12秒前
圆圆完成签到 ,获得积分10
13秒前
桐桐应助酅辉采纳,获得10
13秒前
付小佳发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助30
13秒前
加油完成签到 ,获得积分10
13秒前
星辰大海应助李白采纳,获得10
14秒前
14秒前
123456完成签到,获得积分10
14秒前
14秒前
深情安青应助tong采纳,获得30
14秒前
zw发布了新的文献求助10
15秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5750756
求助须知:如何正确求助?哪些是违规求助? 5465712
关于积分的说明 15367939
捐赠科研通 4889850
什么是DOI,文献DOI怎么找? 2629420
邀请新用户注册赠送积分活动 1577683
关于科研通互助平台的介绍 1534066