Brain Network Analysis: A Review on Multivariate Analytical Methods

多元统计 单变量 计算机科学 多元分析 网络分析 复杂网络 多学科方法 功率图分析 神经影像学 人工智能 图形 网络拓扑 机器学习 数据科学 数据挖掘 理论计算机科学 心理学 神经科学 物理 万维网 社会学 操作系统 量子力学 社会科学
作者
Mohsen Bahrami,Paul J. Laurienti,Heather Shappell,Sean L. Simpson
出处
期刊:Brain connectivity [Mary Ann Liebert]
卷期号:13 (2): 64-79 被引量:2
标识
DOI:10.1089/brain.2022.0007
摘要

Despite the explosive growth of neuroimaging studies aimed at analyzing the brain as a complex system, critical methodological gaps remain to be addressed. Most tools currently used for analyzing network data of the brain are univariate in nature and are based on assumptions borne out of previous techniques not directly related to the big and complex data of the brain. Although graph-based methods have shown great promise, the development of principled multivariate models to address inherent limitations of graph-based methods, such as their dependence on network size and degree distributions, and to allow assessing the effects of multiple phenotypes on the brain and simulating brain networks has largely lagged behind. Although some studies have been made in developing multivariate frameworks to fill this gap, in the absence of a "gold-standard" method or guidelines, choosing the most appropriate method for each study can be another critical challenge for investigators in this multidisciplinary field. Here, we briefly introduce important multivariate methods for brain network analyses in two main categories: data-driven and model-based methods. We discuss whether/how such methods are suited for examining connectivity (edge-level), topology (system-level), or both. This review will aid in choosing an appropriate multivariate method with respect to variables such as network type, number of subjects and brain regions included, and the interest in connectivity, topology, or both. This review is aimed to be accessible to investigators from different backgrounds, with a focus on applications in brain network studies, though the methods may be applicable in other areas too. Impact statement As the U.S. National Institute of Health notes, the rich biomedical data can greatly improve our knowledge of human health if new analytical tools are developed, and their applications are broadly disseminated. A major challenge in analyzing the brain as a complex system is about developing parsimonious multivariate methods, and particularly choosing the most appropriate one among the existing methods with respect to the study variables in this multidisciplinary field. This study provides a review on the most important multivariate methods to aid in helping the most appropriate ones with respect to the desired variables for each study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿白头发多多完成签到,获得积分10
刚刚
情怀应助White Night采纳,获得10
1秒前
xtt完成签到,获得积分10
1秒前
Troye完成签到,获得积分10
2秒前
小布丁完成签到,获得积分10
3秒前
3秒前
虚拟小号发布了新的文献求助10
3秒前
调研昵称发布了新的文献求助10
4秒前
今后应助早早采纳,获得10
4秒前
kaoyear完成签到,获得积分10
4秒前
5秒前
潇湘003应助昏睡的魂幽采纳,获得10
5秒前
6秒前
7秒前
luluyang发布了新的文献求助20
8秒前
Hello应助shi采纳,获得10
8秒前
8秒前
Orange应助长江采纳,获得10
8秒前
青叶白完成签到,获得积分20
10秒前
机灵剑通关注了科研通微信公众号
10秒前
JJ发布了新的文献求助10
10秒前
虚拟小号完成签到,获得积分10
10秒前
10秒前
香蕉觅云应助开朗尔冬采纳,获得10
11秒前
HalfGumps发布了新的文献求助10
11秒前
美满忆文应助富贵采纳,获得10
12秒前
劉平果发布了新的文献求助10
13秒前
qj完成签到,获得积分10
13秒前
13秒前
科研通AI2S应助青叶白采纳,获得20
14秒前
fifteen发布了新的文献求助10
15秒前
Ohhruby发布了新的文献求助10
15秒前
思源应助慕航采纳,获得10
15秒前
15秒前
17秒前
meimei完成签到,获得积分20
18秒前
小二郎应助富贵采纳,获得10
18秒前
18秒前
19秒前
上官若男应助qj采纳,获得10
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154241
求助须知:如何正确求助?哪些是违规求助? 2805095
关于积分的说明 7863477
捐赠科研通 2463276
什么是DOI,文献DOI怎么找? 1311205
科研通“疑难数据库(出版商)”最低求助积分说明 629486
版权声明 601821