YOLO-Pose: Enhancing YOLO for Multi Person Pose Estimation Using Object Keypoint Similarity Loss

姿势 推论 计算机科学 公制(单位) 人工智能 跳跃式监视 相似性(几何) 对象(语法) 目标检测 最小边界框 集合(抽象数据类型) 骨干网 计算机视觉 图像(数学) 机器学习 模式识别(心理学) 工程类 程序设计语言 运营管理 计算机网络
作者
Debapriya Maji,Soyeb Nagori,Manu Mathew,Deepak Poddar
标识
DOI:10.1109/cvprw56347.2022.00297
摘要

We introduce YOLO-pose, a novel heatmap-free approach for joint detection, and 2D multi-person pose estimation in an image based on the popular YOLO object detection framework. Existing heatmap based two-stage approaches are sub-optimal as they are not end-to-end trainable and training relies on a surrogate L1 loss that is not equivalent to maximizing the evaluation metric, i.e. Object Keypoint Similarity (OKS). Our framework allows us to train the model end-to-end and optimize the OKS metric itself. The proposed model learns to jointly detect bounding boxes for multiple persons and their corresponding 2Dposes in a single forward pass and thus bringing in the best of both top-down and bottom-up approaches. Proposed approach doesn’t require the post- processing of bottom-up approaches to group detected keypoints into a skeleton as each bounding box has an associated pose, resulting in an inherent grouping of the keypoints. Unlike top-down approaches, multiple forward passes are done away with since all persons are localized along with their pose in a single inference. YOLO-pose achieves new state-of-the-art results on COCO validation (90.2% AP50) and test-dev set (90.3% AP50), surpassing all existing bottom-up approaches in a single forward pass without flip test, multi-scale testing, or any other test time augmentation. All experiments and results reported in this paper are without any test time augmentation, unlike traditional approaches that use flip-test and multi-scale testing to boost performance. Our training codes will be madepublicly available at https://github.com/TexasInstruments/edgeai-yolov5 https://github.com/TexasInstruments/edgeai-yolox

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夜月残阳应助科研通管家采纳,获得10
刚刚
zhonglv7应助科研通管家采纳,获得10
刚刚
延陵君应助科研通管家采纳,获得30
刚刚
无极微光应助科研通管家采纳,获得20
刚刚
CodeCraft应助科研通管家采纳,获得10
刚刚
刚刚
在水一方应助科研通管家采纳,获得10
刚刚
夜月残阳应助科研通管家采纳,获得10
刚刚
研友_VZG7GZ应助等待黎明采纳,获得10
刚刚
思源应助科研通管家采纳,获得10
刚刚
小马甲应助科研通管家采纳,获得10
刚刚
Criminology34应助科研通管家采纳,获得10
刚刚
星辰大海应助科研通管家采纳,获得10
1秒前
zhonglv7应助科研通管家采纳,获得10
1秒前
彭于晏应助Peng采纳,获得10
1秒前
1秒前
旋123完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
小马甲应助宋叻叻采纳,获得10
1秒前
津津乐道完成签到,获得积分10
2秒前
RBT发布了新的文献求助10
2秒前
夜願发布了新的文献求助10
3秒前
汉堡包应助nikiniki采纳,获得10
3秒前
4秒前
4秒前
奋斗水香发布了新的文献求助10
4秒前
5秒前
5秒前
绝世大魔王完成签到 ,获得积分10
6秒前
香蕉千风发布了新的文献求助10
6秒前
菜菜完成签到 ,获得积分10
7秒前
苗雅宁完成签到,获得积分10
8秒前
彩色的小懒虫完成签到,获得积分10
8秒前
ddsvdv完成签到,获得积分10
8秒前
xue完成签到,获得积分10
9秒前
学不懂数学完成签到,获得积分10
9秒前
9秒前
wangnut完成签到,获得积分10
9秒前
知知完成签到,获得积分10
9秒前
ys完成签到 ,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665044
求助须知:如何正确求助?哪些是违规求助? 4874526
关于积分的说明 15111251
捐赠科研通 4824178
什么是DOI,文献DOI怎么找? 2582656
邀请新用户注册赠送积分活动 1536612
关于科研通互助平台的介绍 1495236