YOLO-Pose: Enhancing YOLO for Multi Person Pose Estimation Using Object Keypoint Similarity Loss

姿势 推论 计算机科学 公制(单位) 人工智能 跳跃式监视 相似性(几何) 对象(语法) 目标检测 最小边界框 集合(抽象数据类型) 骨干网 计算机视觉 图像(数学) 机器学习 模式识别(心理学) 工程类 计算机网络 运营管理 程序设计语言
作者
Debapriya Maji,Soyeb Nagori,Manu Mathew,Deepak Poddar
标识
DOI:10.1109/cvprw56347.2022.00297
摘要

We introduce YOLO-pose, a novel heatmap-free approach for joint detection, and 2D multi-person pose estimation in an image based on the popular YOLO object detection framework. Existing heatmap based two-stage approaches are sub-optimal as they are not end-to-end trainable and training relies on a surrogate L1 loss that is not equivalent to maximizing the evaluation metric, i.e. Object Keypoint Similarity (OKS). Our framework allows us to train the model end-to-end and optimize the OKS metric itself. The proposed model learns to jointly detect bounding boxes for multiple persons and their corresponding 2Dposes in a single forward pass and thus bringing in the best of both top-down and bottom-up approaches. Proposed approach doesn’t require the post- processing of bottom-up approaches to group detected keypoints into a skeleton as each bounding box has an associated pose, resulting in an inherent grouping of the keypoints. Unlike top-down approaches, multiple forward passes are done away with since all persons are localized along with their pose in a single inference. YOLO-pose achieves new state-of-the-art results on COCO validation (90.2% AP50) and test-dev set (90.3% AP50), surpassing all existing bottom-up approaches in a single forward pass without flip test, multi-scale testing, or any other test time augmentation. All experiments and results reported in this paper are without any test time augmentation, unlike traditional approaches that use flip-test and multi-scale testing to boost performance. Our training codes will be madepublicly available at https://github.com/TexasInstruments/edgeai-yolov5 https://github.com/TexasInstruments/edgeai-yolox
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
洪亮完成签到,获得积分0
刚刚
1秒前
drfy123发布了新的文献求助10
1秒前
研友_VZG7GZ应助独特的苗条采纳,获得10
2秒前
2秒前
Little2发布了新的文献求助10
3秒前
盛夏之末应助太阳吖采纳,获得10
3秒前
星辰大海应助mrmrer采纳,获得10
3秒前
hhh完成签到,获得积分20
4秒前
逸鑫林完成签到 ,获得积分10
5秒前
大模型应助mirayq采纳,获得10
5秒前
5秒前
Ava应助21采纳,获得10
6秒前
6秒前
执着谷兰发布了新的文献求助30
6秒前
苻慕梅完成签到,获得积分10
7秒前
可爱的函函应助drfy123采纳,获得10
8秒前
leopardymk发布了新的文献求助10
8秒前
大气沧海发布了新的文献求助10
8秒前
Zhang完成签到,获得积分10
8秒前
8秒前
zhangpeipei完成签到,获得积分10
9秒前
shirly完成签到,获得积分10
9秒前
Cherish发布了新的文献求助10
9秒前
9秒前
10秒前
12秒前
小全完成签到,获得积分10
12秒前
断水流小师弟完成签到,获得积分10
12秒前
12秒前
蓝一笔关注了科研通微信公众号
13秒前
13秒前
噜噜完成签到,获得积分10
13秒前
Ava应助周周采纳,获得10
14秒前
YU完成签到,获得积分10
14秒前
14秒前
15秒前
16秒前
噜噜发布了新的文献求助10
16秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961269
求助须知:如何正确求助?哪些是违规求助? 3507536
关于积分的说明 11136688
捐赠科研通 3239991
什么是DOI,文献DOI怎么找? 1790625
邀请新用户注册赠送积分活动 872449
科研通“疑难数据库(出版商)”最低求助积分说明 803199