Accelerating Offshore Windfarm Site Characterization Using Deep Learning

海底管道 计算机科学 表征(材料科学) 人工智能 地质学 海洋学 纳米技术 材料科学
作者
Haibin Di,Vítor Corado Simões,Tao Zhao,Aria Abubakar
标识
DOI:10.4043/35364-ms
摘要

Abstract Developing offshore wind farms requires effective mapping of shallow subsurface for turbine foundation design, construction, and monitoring, all of which face many challenges in especially field data conditioning, structure interpretation and modeling, and geotechnical property estimation. In this paper, we revisit these challenges from the perspective of pattern recognition and propose implementing deep learning (DL) into automating three essential tasks in windfarm site characterization, including (i) cone-penetration testing (CPT) data conditioning, (ii) ultra-high resolution (UHR) seismic horizon picking, and (iii) integrated geotechnical property estimation, which leads to an accelerated workflow for delivering reliable ground models in an offshore windfarm site of interest. Specifically, the CPT data conditioning aims at identifying outliers in CPT data and reconstructing missing segments via a 1D auto-encoder. The UHR seismic horizon picking aims at tracking key horizons in collected UHR seismic via a two-step supervised DL and building a horizon model that captures the primary structural patterns in the target area. The integrated geotechnical property estimation aims at integrating the reconstructed CPT logs, the UHR seismic images, and the horizon models into simultaneously estimating multiple geotechnical properties such as cone-tip resistance (RES) and friction ratio (FRR) via semi-supervised DL. As tested over the public Borssele dataset within the Dutch Offshore Windfarm Zone, the proposed DL-accelerated workflow successfully improves the quality of CPT data, picks multiple major horizons that reflect the complexities of shallow subsurface, and constructs the corresponding RES and FRR models that delineate the lateral variations in geotechnical across the Borssele area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天涯明月完成签到,获得积分10
2秒前
汉堡包应助医路有你采纳,获得10
5秒前
月潮共生完成签到 ,获得积分10
5秒前
yy完成签到,获得积分10
6秒前
池暮江吟春完成签到,获得积分0
7秒前
9秒前
雾潋关注了科研通微信公众号
10秒前
ljx完成签到 ,获得积分10
11秒前
风城玫瑰发布了新的文献求助10
14秒前
yongzaizhuigan完成签到,获得积分0
14秒前
15秒前
张铁柱完成签到,获得积分10
15秒前
洁净的酬海完成签到 ,获得积分10
17秒前
田心雨完成签到 ,获得积分10
17秒前
ZZ0110Z完成签到 ,获得积分10
18秒前
医路有你完成签到,获得积分10
18秒前
18秒前
风城玫瑰完成签到,获得积分10
19秒前
Zurlliant完成签到,获得积分10
19秒前
嘻嘻完成签到 ,获得积分10
19秒前
beibei完成签到,获得积分10
21秒前
医路有你发布了新的文献求助10
21秒前
Hyc28441711完成签到,获得积分10
21秒前
爱撒娇的长颈鹿完成签到,获得积分10
24秒前
孟惜儿完成签到,获得积分10
26秒前
26秒前
笨笨的怜南完成签到,获得积分10
27秒前
Accepted完成签到,获得积分10
29秒前
30秒前
Aurora.H完成签到,获得积分10
30秒前
ladette发布了新的文献求助10
31秒前
wanci应助科研通管家采纳,获得10
33秒前
ccccchen完成签到,获得积分10
33秒前
传奇3应助科研通管家采纳,获得10
34秒前
eternity136应助科研通管家采纳,获得10
34秒前
nanci应助科研通管家采纳,获得20
34秒前
Jasper应助科研通管家采纳,获得10
34秒前
Clover04应助科研通管家采纳,获得10
34秒前
34秒前
Akim应助轩辕书白采纳,获得10
35秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137115
求助须知:如何正确求助?哪些是违规求助? 2788086
关于积分的说明 7784551
捐赠科研通 2444121
什么是DOI,文献DOI怎么找? 1299763
科研通“疑难数据库(出版商)”最低求助积分说明 625574
版权声明 601011