Accelerating Offshore Windfarm Site Characterization Using Deep Learning

海底管道 计算机科学 表征(材料科学) 人工智能 地质学 海洋学 纳米技术 材料科学
作者
Haibin Di,Vítor Corado Simões,Tao Zhao,Aria Abubakar
标识
DOI:10.4043/35364-ms
摘要

Abstract Developing offshore wind farms requires effective mapping of shallow subsurface for turbine foundation design, construction, and monitoring, all of which face many challenges in especially field data conditioning, structure interpretation and modeling, and geotechnical property estimation. In this paper, we revisit these challenges from the perspective of pattern recognition and propose implementing deep learning (DL) into automating three essential tasks in windfarm site characterization, including (i) cone-penetration testing (CPT) data conditioning, (ii) ultra-high resolution (UHR) seismic horizon picking, and (iii) integrated geotechnical property estimation, which leads to an accelerated workflow for delivering reliable ground models in an offshore windfarm site of interest. Specifically, the CPT data conditioning aims at identifying outliers in CPT data and reconstructing missing segments via a 1D auto-encoder. The UHR seismic horizon picking aims at tracking key horizons in collected UHR seismic via a two-step supervised DL and building a horizon model that captures the primary structural patterns in the target area. The integrated geotechnical property estimation aims at integrating the reconstructed CPT logs, the UHR seismic images, and the horizon models into simultaneously estimating multiple geotechnical properties such as cone-tip resistance (RES) and friction ratio (FRR) via semi-supervised DL. As tested over the public Borssele dataset within the Dutch Offshore Windfarm Zone, the proposed DL-accelerated workflow successfully improves the quality of CPT data, picks multiple major horizons that reflect the complexities of shallow subsurface, and constructs the corresponding RES and FRR models that delineate the lateral variations in geotechnical across the Borssele area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lvshiwen发布了新的文献求助10
刚刚
小圆不头大完成签到,获得积分10
刚刚
刚刚
1秒前
你的风筝应助czc采纳,获得10
1秒前
wang完成签到,获得积分10
1秒前
烟花应助Seciy采纳,获得10
2秒前
烂漫的猕猴桃完成签到,获得积分10
3秒前
认真的大楚完成签到,获得积分10
3秒前
3秒前
6秒前
谁家那小谁完成签到,获得积分10
6秒前
李lll发布了新的文献求助10
6秒前
善上完成签到,获得积分10
7秒前
8秒前
罗颂子发布了新的文献求助10
8秒前
9秒前
v321完成签到,获得积分10
9秒前
爱笑的阿飞哥完成签到,获得积分10
9秒前
Owen应助zyyz采纳,获得10
9秒前
11秒前
科研通AI2S应助DimWhite采纳,获得10
11秒前
92年的矿泉水完成签到,获得积分10
11秒前
11秒前
永远明媚发布了新的文献求助10
11秒前
faiting发布了新的文献求助100
11秒前
秦春歌完成签到,获得积分10
11秒前
SciGPT应助冷酷小海豚采纳,获得10
11秒前
splatoon完成签到,获得积分10
12秒前
12秒前
张晓飞发布了新的文献求助100
12秒前
13秒前
13秒前
KennyS完成签到,获得积分10
13秒前
13秒前
splatoon发布了新的文献求助10
15秒前
无花果应助李lll采纳,获得10
15秒前
15秒前
黑粉头头发布了新的文献求助10
16秒前
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958345
求助须知:如何正确求助?哪些是违规求助? 3504604
关于积分的说明 11118997
捐赠科研通 3235815
什么是DOI,文献DOI怎么找? 1788530
邀请新用户注册赠送积分活动 871225
科研通“疑难数据库(出版商)”最低求助积分说明 802600