Biogenic Manganese Oxide Synthesized by a Marine Bacterial Multicopper Oxidase MnxG Reveals Oxygen Evolution Activity

双锰矿 分解水 氧化锰 催化作用 化学 过电位 析氧 化学工程 氧化物 无机化学 材料科学 有机化学 光催化 电化学 工程类 物理化学 电极
作者
Wen Fu,Forrest P. Hyler,Joel Sanchez,Thomas F. Jaramillo,Jesús M. Velázquez,Lizhi Tao,R. David Britt
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:14 (9): 7232-7242 被引量:2
标识
DOI:10.1021/acscatal.3c06119
摘要

Solar energy provides one major pathway to addressing global energy issues. Inspired by photosynthesis, nonbiological solar energy systems are designed for both absorbing light and "splitting water" to generate hydrogen fuel. However, during this process, the oxygen evolution reaction (OER) at the anode has a high kinetic barrier and overpotential, which reduces the overall efficiency. To improve the efficiency of the OER, significant efforts have been made to develop promising OER catalysts. Inspired by the highly efficient oxygen-evolving complex (OEC) in photosystem II in nature, manganese-oxide catalysts have garnered significant attention due to their low cost and minimal toxicity. However, the synthesis of most manganese-oxide catalysts requires strong oxidants, external high electric potentials, or highly basic conditions, which make large-scale production energy-consuming and less efficient. In this study, we present a natural and clean process for synthesizing manganese-oxide catalysts by using an oceanic bacterial manganese oxidase named MnxG. The biogenic manganese oxides, as generated under different conditions, have different morphologies and crystalline structures and are as effective as or even more effective than synthetic birnessite. Spectroscopic analyses, including XANES, XPS, and EPR, suggest that the monoclinic-birnessite component, together with the surface Mn(III) species, plays a crucial role in the OER activity of biogenic MnOx. This work provides insights into the development of efficient OER catalysts that can be produced by using a gentle and sustainable process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
领导范儿应助石土土采纳,获得10
刚刚
wenjiaolin完成签到,获得积分10
1秒前
CodeCraft应助粉色娇嫩采纳,获得10
1秒前
研友_knggYn发布了新的文献求助10
1秒前
1秒前
你好完成签到,获得积分10
2秒前
2秒前
热心凡雁发布了新的文献求助10
2秒前
CipherSage应助无心的复天采纳,获得10
2秒前
yciDo完成签到,获得积分10
3秒前
科研通AI5应助reegdsgsfd采纳,获得10
3秒前
烂漫的筮发布了新的文献求助10
4秒前
wangyapeng完成签到,获得积分10
4秒前
4秒前
02完成签到,获得积分10
5秒前
5秒前
青松完成签到,获得积分20
5秒前
5秒前
悉达多发布了新的文献求助10
5秒前
5秒前
不要水肿了完成签到,获得积分10
6秒前
Jackson发布了新的文献求助10
6秒前
热心凡雁完成签到,获得积分10
6秒前
6秒前
WSGQT发布了新的文献求助10
6秒前
7秒前
科研通AI5应助烨采采纳,获得10
7秒前
7秒前
8秒前
8秒前
小v1212发布了新的文献求助10
8秒前
rwq发布了新的文献求助10
8秒前
8秒前
丘比特应助榛子采纳,获得10
8秒前
自觉平露完成签到,获得积分10
9秒前
yangmaimai完成签到,获得积分10
9秒前
9秒前
9秒前
林林宁宁发布了新的文献求助30
10秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Vertebrate Palaeontology, 5th Edition 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5154942
求助须知:如何正确求助?哪些是违规求助? 4350694
关于积分的说明 13546246
捐赠科研通 4193517
什么是DOI,文献DOI怎么找? 2299960
邀请新用户注册赠送积分活动 1299897
关于科研通互助平台的介绍 1244949