Low-Contrast Medical Image Segmentation via Transformer and Boundary Perception

对比度(视觉) 人工智能 计算机视觉 分割 感知 图像分割 计算机科学 心理学 神经科学
作者
Yinglin Zhang,Ruiling Xi,Wei Wang,Heng Li,Lingxi Hu,Huiyan Lin,Dave Towey,Ruibin Bai,Huazhu Fu,Risa Higashita,Jiang Liu
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:8 (3): 2297-2309 被引量:1
标识
DOI:10.1109/tetci.2024.3353624
摘要

Low-contrast medical image segmentation is a challenging task that requires full use of local details and global context. However, existing convolutional neural networks (CNNs) cannot fully exploit global information due to limited receptive fields and local weight sharing. On the other hand, the transformer effectively establishes long-range dependencies but lacks desirable properties for modeling local details. This paper proposes a Transformer-embedded Boundary perception Network (TBNet) that combines the advantages of transformer and convolution for low-contrast medical image segmentation. Firstly, the transformer-embedded module uses convolution at the low-level layer to model local details and uses the Enhanced TRansformer (ETR) to capture long-range dependencies at the high-level layer. This module can extract robust features with semantic contexts to infer the possible target location and basic structure in low-contrast conditions. Secondly, we utilize the decoupled body-edge branch to promote general feature learning and precept precise boundary locations. The ETR establishes long-range dependencies across the whole feature map range and is enhanced by introducing local information. We implement it in a parallel mode, i.e., the group of self-attention with multi-head captures the global relationship, and the group of convolution retains local details. We compare TBNet with other state-of-the-art (SOTA) methods on the cornea endothelial cell, ciliary body, and kidney segmentation tasks. The TBNet improves segmentation performance, proving its effectiveness and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Ava应助阿湫采纳,获得10
2秒前
wangling2333应助Tangviva1988采纳,获得10
2秒前
万能图书馆应助chenm0333042采纳,获得10
4秒前
科研通AI2S应助从不内卷采纳,获得10
4秒前
单薄的风华完成签到,获得积分20
4秒前
4秒前
wewtetret发布了新的文献求助10
4秒前
小children丙完成签到,获得积分10
4秒前
废羊羊发布了新的文献求助10
4秒前
4秒前
5秒前
边瑞明发布了新的文献求助10
5秒前
6秒前
乔乔兔应助向雨竹采纳,获得10
6秒前
7秒前
zl12345完成签到,获得积分10
7秒前
serein发布了新的文献求助10
7秒前
华仔应助棋士采纳,获得10
7秒前
baomingqiu完成签到,获得积分10
7秒前
NexusExplorer应助承乐采纳,获得10
7秒前
坚强幼晴发布了新的文献求助10
8秒前
lingyu发布了新的文献求助10
8秒前
8R60d8应助Kristal采纳,获得10
8秒前
9秒前
研友_VZG7GZ应助逍遥采纳,获得10
9秒前
9秒前
哈密哈密完成签到,获得积分10
9秒前
bkagyin应助llllll采纳,获得10
9秒前
ll发布了新的文献求助10
9秒前
wss发布了新的文献求助10
10秒前
顾远发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
源缘完成签到 ,获得积分10
11秒前
11秒前
要开心吖发布了新的文献求助10
11秒前
热心十三发布了新的文献求助10
11秒前
Russell发布了新的文献求助10
11秒前
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951583
求助须知:如何正确求助?哪些是违规求助? 3496980
关于积分的说明 11085596
捐赠科研通 3227413
什么是DOI,文献DOI怎么找? 1784413
邀请新用户注册赠送积分活动 868495
科研通“疑难数据库(出版商)”最低求助积分说明 801154