Artificial Neural Networks for Inverse Design of a Semi-Auxetic Metamaterial

辅助 超材料 反向 人工神经网络 斗篷 计算机科学 材料科学 人工智能 数学 光电子学 几何学 复合材料
作者
Mohammadreza Mohammadnejad,Amin Montazeri,Ehsan Bahmanpour,Maryam Mahnama
出处
期刊:Thin-walled Structures [Elsevier BV]
卷期号:200: 111927-111927
标识
DOI:10.1016/j.tws.2024.111927
摘要

This study introduces an artificial neural network approach for the inverse design of a novel semi-auxetic mechanical metamaterial to achieve a specified stress-strain curve and/or Poisson's ratio-strain curve. To accomplish this, after presenting the metamaterial and assessing its characteristics, 1500 structures of the same metamaterial with various parameters are generated using a parametric model. The metamaterials are then gone through a compression test simulation using Finite Element (FE) analysis; accordingly, each metamaterial's stress-strain and Poisson's ratio curves are derived. The results of FE simulations are validated using mesh convergence check and experimental compression tests on a 3D printed specimen of the proposed metamaterial. In the next step, 80% of the data are randomly selected to be used as training data for the artificial neural networks (ANN), while the remaining 20% is employed to evaluate the performance of the ANNs using different metrics. The capability of the ANNs to predict the design parameters of the proposed metamaterial is assessed by providing different kinds of inputs, including the stress-strain curve, Poisson's ratio curve, and both. The observations reveal that the ANNs achieve more accurate results when both the stress-strain and Poisson's ratio-strain curves are provided as the inputs. The presented ANN in this study serves as a robust tool for precisely designing the parameters of the proposed metamaterial, allowing for the attainment of the desired stress-strain and/or Poisson's ratio-strain behavior. It is shown that the proposed metamaterial owns potential applications in crawling soft robotics, automotive, and construction industries.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小情绪应助U9A采纳,获得10
2秒前
三新荞完成签到,获得积分10
2秒前
4秒前
顾矜应助过时的冷风采纳,获得10
4秒前
会撒娇的惜蕊完成签到,获得积分10
4秒前
5秒前
鹄之梦2006完成签到,获得积分10
6秒前
slby发布了新的文献求助10
8秒前
11秒前
13秒前
13秒前
14秒前
14秒前
拼搏菲音发布了新的文献求助10
14秒前
UAU完成签到,获得积分20
17秒前
17秒前
hongxing liu发布了新的文献求助10
19秒前
兼听则明发布了新的文献求助30
19秒前
拼搏菲音完成签到,获得积分10
20秒前
21秒前
21秒前
liars发布了新的文献求助10
22秒前
wuniuniu完成签到,获得积分10
23秒前
24秒前
HHH完成签到,获得积分10
25秒前
LIGHT完成签到,获得积分10
25秒前
小蘑菇应助Wonder罗采纳,获得10
26秒前
slby完成签到,获得积分10
26秒前
wuniuniu发布了新的文献求助10
26秒前
吴彦祖发布了新的文献求助10
27秒前
深情安青应助李y梅子采纳,获得20
28秒前
28秒前
29秒前
小蘑菇应助钱念波采纳,获得10
30秒前
Ava应助荷珠采纳,获得10
30秒前
31秒前
sln完成签到,获得积分10
31秒前
31秒前
33秒前
古月发布了新的文献求助10
33秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993533
求助须知:如何正确求助?哪些是违规求助? 3534281
关于积分的说明 11265112
捐赠科研通 3274061
什么是DOI,文献DOI怎么找? 1806303
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809710