已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Artificial Neural Networks for Inverse Design of a Semi-Auxetic Metamaterial

辅助 超材料 反向 人工神经网络 斗篷 计算机科学 材料科学 人工智能 数学 光电子学 几何学 复合材料
作者
Mohammadreza Mohammadnejad,Amin Montazeri,Ehsan Bahmanpour,Maryam Mahnama
出处
期刊:Thin-walled Structures [Elsevier]
卷期号:200: 111927-111927
标识
DOI:10.1016/j.tws.2024.111927
摘要

This study introduces an artificial neural network approach for the inverse design of a novel semi-auxetic mechanical metamaterial to achieve a specified stress-strain curve and/or Poisson's ratio-strain curve. To accomplish this, after presenting the metamaterial and assessing its characteristics, 1500 structures of the same metamaterial with various parameters are generated using a parametric model. The metamaterials are then gone through a compression test simulation using Finite Element (FE) analysis; accordingly, each metamaterial's stress-strain and Poisson's ratio curves are derived. The results of FE simulations are validated using mesh convergence check and experimental compression tests on a 3D printed specimen of the proposed metamaterial. In the next step, 80% of the data are randomly selected to be used as training data for the artificial neural networks (ANN), while the remaining 20% is employed to evaluate the performance of the ANNs using different metrics. The capability of the ANNs to predict the design parameters of the proposed metamaterial is assessed by providing different kinds of inputs, including the stress-strain curve, Poisson's ratio curve, and both. The observations reveal that the ANNs achieve more accurate results when both the stress-strain and Poisson's ratio-strain curves are provided as the inputs. The presented ANN in this study serves as a robust tool for precisely designing the parameters of the proposed metamaterial, allowing for the attainment of the desired stress-strain and/or Poisson's ratio-strain behavior. It is shown that the proposed metamaterial owns potential applications in crawling soft robotics, automotive, and construction industries.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Limpidly完成签到,获得积分10
刚刚
nater4ver发布了新的文献求助10
4秒前
4秒前
隐形曼青应助鲜艳的熊猫采纳,获得10
6秒前
9秒前
9秒前
12秒前
13秒前
青提芝士挞完成签到 ,获得积分10
14秒前
nihao发布了新的文献求助10
16秒前
17秒前
初雪完成签到,获得积分10
17秒前
18秒前
李禾完成签到,获得积分10
20秒前
上官若男应助lls采纳,获得10
21秒前
鳕鹅完成签到 ,获得积分10
21秒前
bukeshuo发布了新的文献求助10
21秒前
大龄孤独的苦旅完成签到,获得积分10
22秒前
25秒前
26秒前
kls完成签到,获得积分10
27秒前
27秒前
不安青牛应助科研通管家采纳,获得10
28秒前
不安青牛应助科研通管家采纳,获得10
28秒前
Singularity应助科研通管家采纳,获得10
28秒前
28秒前
不安青牛应助科研通管家采纳,获得30
28秒前
宇智波白哉完成签到,获得积分10
28秒前
Singularity应助科研通管家采纳,获得10
28秒前
lbyscu完成签到 ,获得积分10
28秒前
啊喂发布了新的文献求助10
29秒前
大力鹤完成签到 ,获得积分10
29秒前
东方欲晓完成签到 ,获得积分0
30秒前
jmg03发布了新的文献求助10
31秒前
刘晓倩发布了新的文献求助10
33秒前
34秒前
36秒前
端碗吃饭完成签到,获得积分10
36秒前
星辰完成签到,获得积分10
38秒前
颜南风完成签到 ,获得积分10
40秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162031
求助须知:如何正确求助?哪些是违规求助? 2813164
关于积分的说明 7898852
捐赠科研通 2472153
什么是DOI,文献DOI怎么找? 1316366
科研通“疑难数据库(出版商)”最低求助积分说明 631278
版权声明 602129