Artificial neural networks for inverse design of a semi-auxetic metamaterial

辅助 超材料 泊松比 反向 泊松分布 人工神经网络 压力(语言学) 参数统计 压缩(物理) 计算机科学 结构工程 材料科学 人工智能 数学 光电子学 统计 几何学 工程类 复合材料 语言学 哲学
作者
Mohammadreza Mohammadnejad,Amin Montazeri,Ehsan Bahmanpour,Maryam Mahnama
出处
期刊:Thin-walled Structures [Elsevier]
卷期号:200: 111927-111927 被引量:34
标识
DOI:10.1016/j.tws.2024.111927
摘要

This study introduces an artificial neural network approach for the inverse design of a novel semi-auxetic mechanical metamaterial to achieve a specified stress-strain curve and/or Poisson's ratio-strain curve. To accomplish this, after presenting the metamaterial and assessing its characteristics, 1500 structures of the same metamaterial with various parameters are generated using a parametric model. The metamaterials are then gone through a compression test simulation using Finite Element (FE) analysis; accordingly, each metamaterial's stress-strain and Poisson's ratio curves are derived. The results of FE simulations are validated using mesh convergence check and experimental compression tests on a 3D printed specimen of the proposed metamaterial. In the next step, 80% of the data are randomly selected to be used as training data for the artificial neural networks (ANN), while the remaining 20% is employed to evaluate the performance of the ANNs using different metrics. The capability of the ANNs to predict the design parameters of the proposed metamaterial is assessed by providing different kinds of inputs, including the stress-strain curve, Poisson's ratio curve, and both. The observations reveal that the ANNs achieve more accurate results when both the stress-strain and Poisson's ratio-strain curves are provided as the inputs. The presented ANN in this study serves as a robust tool for precisely designing the parameters of the proposed metamaterial, allowing for the attainment of the desired stress-strain and/or Poisson's ratio-strain behavior. It is shown that the proposed metamaterial owns potential applications in crawling soft robotics, automotive, and construction industries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大马哈鱼发布了新的文献求助10
刚刚
orixero应助啊萍采纳,获得10
刚刚
刚刚
wdasdas发布了新的文献求助10
刚刚
李佳发布了新的文献求助10
刚刚
1秒前
Still完成签到,获得积分10
1秒前
1秒前
逃跑的想表白的你猜完成签到,获得积分10
3秒前
大个应助Chris采纳,获得10
4秒前
吃吃吃不敢吃完成签到 ,获得积分10
4秒前
tang发布了新的文献求助10
5秒前
5秒前
恐龙猪大王完成签到,获得积分10
6秒前
满意曼荷完成签到,获得积分10
6秒前
6秒前
小贾发布了新的文献求助10
6秒前
7秒前
ll发布了新的文献求助30
7秒前
vadfdfb完成签到,获得积分10
7秒前
geg发布了新的文献求助30
7秒前
Akim应助失眠的血茗采纳,获得10
7秒前
8秒前
hehe完成签到,获得积分10
9秒前
9秒前
9秒前
wanci应助Jared采纳,获得10
10秒前
Pomelo发布了新的文献求助10
10秒前
11秒前
Anne发布了新的文献求助30
11秒前
Jason发布了新的文献求助10
11秒前
12秒前
夏d发布了新的文献求助10
12秒前
Aireen发布了新的文献求助10
12秒前
星辰大海应助甘楽采纳,获得10
13秒前
13秒前
Ava应助yuhan采纳,获得10
13秒前
13秒前
远远完成签到 ,获得积分10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546153
求助须知:如何正确求助?哪些是违规求助? 4631960
关于积分的说明 14624094
捐赠科研通 4573677
什么是DOI,文献DOI怎么找? 2507699
邀请新用户注册赠送积分活动 1484361
关于科研通互助平台的介绍 1455656