A Development of Fuzzy-Rule-Based Regression Models Through Using Decision Trees

决策树 计算机科学 模糊规则 人工智能 回归分析 模糊逻辑 回归 数据挖掘 机器学习 模糊集 数学 统计
作者
Xiubin Zhu,Xingchen Hu,Lan Yang,Witold Pedrycz,Zhiwu Li
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:32 (5): 2976-2986 被引量:1
标识
DOI:10.1109/tfuzz.2024.3365572
摘要

This article presents a design and realization of fuzzy rule-based regression models based on standard decision trees. A two-phase design of rule-based model is offered in this study to provide a good alternative to cope with high dimensional data. We first build a standard decision tree on the basis of variables in order to discover homogeneous subsets of the data. Subsequently, a collection of fuzzy rules is induced by the decision tree with the aim of reflecting the underlying phenomenon. The calculation of membership degrees and the refinement of fuzzy rules on the basis of data located in each partition exhibit a substantial level of originality and innovation. The introduction of fuzziness into decision rules helps to characterize and quantify the continuous change of output values near the boundary areas. The constructed fuzzy rules could efficiently handle the ambiguity and vagueness in the experimental evidence and offer an accurate characterization of the nonlinearities of the input–output relationships. The developed fuzzy models could achieve much higher prediction accuracy in comparison with traditional decision trees of the same size and fuzzy rule-based models with the same number of rules. Another advantage of the proposed methodology comes with the evident readability of the formed fuzzy rules. A series of experiments is reported to demonstrate the superiority of the proposed architecture of fuzzy rule-based models over traditional fuzzy rule-based models and decision trees.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Olivia完成签到,获得积分10
2秒前
不冰淇淋完成签到,获得积分10
3秒前
3秒前
香菜芋头发布了新的文献求助10
3秒前
3秒前
丘比特应助瑶625采纳,获得10
4秒前
乌滴子发布了新的文献求助10
4秒前
佚小满发布了新的文献求助10
5秒前
乐观碧灵完成签到,获得积分10
6秒前
6秒前
HiK完成签到 ,获得积分10
8秒前
9秒前
祥云完成签到,获得积分10
9秒前
9秒前
9秒前
zzz发布了新的文献求助10
10秒前
科研通AI2S应助111采纳,获得10
12秒前
椰椰发布了新的文献求助10
15秒前
科研通AI5应助777采纳,获得10
15秒前
16秒前
鳗鱼橘子发布了新的文献求助10
17秒前
我是老大应助复杂雪柳采纳,获得10
17秒前
科研通AI2S应助琪小7采纳,获得10
17秒前
Luoyi完成签到 ,获得积分10
18秒前
faye发布了新的文献求助10
19秒前
乐观碧灵发布了新的文献求助10
19秒前
大个应助loveyouxkkt采纳,获得30
19秒前
20秒前
20秒前
叶子发布了新的文献求助10
21秒前
ddhhh完成签到,获得积分10
22秒前
CipherSage应助123采纳,获得10
22秒前
科研通AI5应助老实青采纳,获得10
22秒前
小半完成签到,获得积分10
22秒前
23秒前
NexusExplorer应助英俊的胜采纳,获得10
23秒前
JamesPei应助春酒4采纳,获得10
23秒前
干净的笑卉完成签到,获得积分10
24秒前
疯狂的小越完成签到,获得积分10
24秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3525973
求助须知:如何正确求助?哪些是违规求助? 3106420
关于积分的说明 9280254
捐赠科研通 2804049
什么是DOI,文献DOI怎么找? 1539151
邀请新用户注册赠送积分活动 716511
科研通“疑难数据库(出版商)”最低求助积分说明 709462