Artificial Intelligence and Machine Learning Applications in Critically Ill Brain Injured Patients

神经重症监护 医学 概化理论 医疗保健 透视图(图形) 大数据 人工智能 病危 重症监护医学 计算机科学 心理学 发展心理学 经济 经济增长 操作系统
作者
Jeffrey R. Vitt,Shraddha Mainali
出处
期刊:Seminars in Neurology [Georg Thieme Verlag KG]
卷期号:44 (03): 342-356 被引量:4
标识
DOI:10.1055/s-0044-1785504
摘要

Abstract The utilization of Artificial Intelligence (AI) and Machine Learning (ML) is paving the way for significant strides in patient diagnosis, treatment, and prognostication in neurocritical care. These technologies offer the potential to unravel complex patterns within vast datasets ranging from vast clinical data and EEG (electroencephalogram) readings to advanced cerebral imaging facilitating a more nuanced understanding of patient conditions. Despite their promise, the implementation of AI and ML faces substantial hurdles. Historical biases within training data, the challenge of interpreting multifaceted data streams, and the “black box” nature of ML algorithms present barriers to widespread clinical adoption. Moreover, ethical considerations around data privacy and the need for transparent, explainable models remain paramount to ensure trust and efficacy in clinical decision-making. This article reflects on the emergence of AI and ML as integral tools in neurocritical care, discussing their roles from the perspective of both their scientific promise and the associated challenges. We underscore the importance of extensive validation in diverse clinical settings to ensure the generalizability of ML models, particularly considering their potential to inform critical medical decisions such as withdrawal of life-sustaining therapies. Advancement in computational capabilities is essential for implementing ML in clinical settings, allowing for real-time analysis and decision support at the point of care. As AI and ML are poised to become commonplace in clinical practice, it is incumbent upon health care professionals to understand and oversee these technologies, ensuring they adhere to the highest safety standards and contribute to the realization of personalized medicine. This engagement will be pivotal in integrating AI and ML into patient care, optimizing outcomes in neurocritical care through informed and data-driven decision-making.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
犹豫小伙发布了新的文献求助10
1秒前
yu完成签到,获得积分20
1秒前
August发布了新的文献求助10
1秒前
2秒前
雨瑶发布了新的文献求助10
2秒前
aaa完成签到,获得积分10
3秒前
kai发布了新的文献求助10
3秒前
目眩完成签到,获得积分10
4秒前
李爱国应助KKLD采纳,获得10
4秒前
赘婿应助MelinaY采纳,获得10
4秒前
Jim发布了新的文献求助10
5秒前
lxk666发布了新的文献求助10
6秒前
6秒前
薛枏完成签到,获得积分10
8秒前
8秒前
云九卿发布了新的文献求助30
9秒前
NexusExplorer应助qiao采纳,获得30
10秒前
13秒前
英姑应助Cyber_relic采纳,获得10
13秒前
13秒前
13秒前
15秒前
16秒前
17秒前
sunshine发布了新的文献求助10
17秒前
紧张的靖巧给紧张的靖巧的求助进行了留言
18秒前
沈臻完成签到,获得积分10
18秒前
彭于晏应助海派Hi采纳,获得10
19秒前
20秒前
MelinaY发布了新的文献求助10
20秒前
善学以致用应助小陀螺采纳,获得10
22秒前
巴拉巴拉发布了新的文献求助10
23秒前
KKLD发布了新的文献求助10
23秒前
wanci应助负责流口水采纳,获得10
26秒前
27秒前
云九卿完成签到,获得积分10
28秒前
坦率紫槐完成签到,获得积分10
29秒前
谦让以冬发布了新的文献求助10
29秒前
29秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
The Three Stars Each: The Astrolabes and Related Texts 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
SAS, Python and R: A Cross-Reference Guide for Data Science 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3385781
求助须知:如何正确求助?哪些是违规求助? 2999195
关于积分的说明 8784023
捐赠科研通 2684827
什么是DOI,文献DOI怎么找? 1470685
科研通“疑难数据库(出版商)”最低求助积分说明 679912
邀请新用户注册赠送积分活动 672407