Unraveling the Microcrystalline Carbon Evolution Mechanism of Biomass-Derived Hard Carbon for Sodium-Ion Batteries

微晶纤维素 微晶 碳纤维 木质素 材料科学 化学工程 热解 纤维素 生物量(生态学) 化学 有机化学 复合材料 结晶学 地质学 海洋学 复合数 工程类
作者
Gaoyue Zhang,Chao Chen,Chenchen Xu,Junxiao Li,Hualin Ye,Ao Wang,Xin Cao,Kang Sun,Jianchun Jiang
出处
期刊:Energy & Fuels [American Chemical Society]
卷期号:38 (9): 8326-8336 被引量:22
标识
DOI:10.1021/acs.energyfuels.4c00823
摘要

Microcrystalline carbon is the essential constituent unit that constitutes the hard carbon material for sodium-ion batteries. However, the evolution mechanism of microcrystalline carbon remains controversial, on account of the diversity of biomass composition. Here, we conducted a systematic study of the evolutionary mechanism of microcrystalline carbon using lignin and cellulose as models. It was found that lignin is more readily converted into microcrystalline carbon structures than cellulose. Owing to the differences in pyrolysis processes, lignin-derived microcrystalline carbon exhibits isotropic arrangement properties and evolves into long-range ordered graphite-like structures with increasing pyrolysis temperatures. In contrast, the anisotropic arrangement of cellulose-derived microcrystalline carbon allows them to maintain long-range disordered structures under high-temperature pyrolysis. Upon further analysis using four forestry biomass wastes with different compositional ratios to prepare hard carbon, we found that proper ratios of lignin and cellulose ensure a sufficient amount of microcrystalline carbon while avoiding overgrowth of microcrystalline carbon, where the tightness of the microcrystalline carbon stacking structure was positively correlated with lignin content. Besides, coconut-shell-derived hard carbon has a long-range disordered and short-range ordered microcrystalline stacking structure and exhibits a high capacity of 329.3 mAh g–1.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
2秒前
2秒前
3秒前
3秒前
3秒前
贺兰觿完成签到 ,获得积分10
3秒前
3秒前
4秒前
4秒前
4秒前
王明磊完成签到 ,获得积分10
5秒前
领导范儿应助别说话采纳,获得10
5秒前
6秒前
25上岸完成签到,获得积分10
6秒前
元谷雪发布了新的文献求助10
7秒前
7秒前
王松桐完成签到,获得积分10
7秒前
Fliu完成签到,获得积分10
8秒前
8秒前
8秒前
77发布了新的文献求助10
8秒前
Nin完成签到,获得积分10
8秒前
ZZ发布了新的文献求助10
8秒前
zy发布了新的文献求助10
9秒前
只强完成签到,获得积分10
9秒前
研友_VZG7GZ应助keke采纳,获得10
9秒前
爱吃果冻发布了新的文献求助10
9秒前
10秒前
Orange应助梅雨季来信采纳,获得10
10秒前
元神发布了新的文献求助10
10秒前
科勒基侈发布了新的文献求助10
10秒前
12秒前
jewel9发布了新的文献求助10
12秒前
南桥发布了新的文献求助10
13秒前
嘞是举仔应助无辜从阳采纳,获得30
13秒前
不明完成签到 ,获得积分10
14秒前
凡凡发布了新的文献求助10
14秒前
15秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695408
求助须知:如何正确求助?哪些是违规求助? 5101761
关于积分的说明 15216105
捐赠科研通 4851704
什么是DOI,文献DOI怎么找? 2602676
邀请新用户注册赠送积分活动 1554320
关于科研通互助平台的介绍 1512360